from pine tree byproducts to substitute n‐hexane for the extraction of bioactive compounds. Green Chemistry 18 (24): 6596–6608. https://doi.org/10.1039/c6gc02191c.
67 67. Diallo, A.O., Len, C., Morgan, A.B. et al. (2012). Revisiting physico–chemical hazards of ionic liquids. Separation and Purification Technology 97: 228–234. https://doi.org/10.1016/j.seppur.2012.02.016.
68 68. Menegazzo, F., Ghedini, E., and Signoretto, M. (2018). 5‐Hydroxymethylfurfural (HMF) production from real biomasses. Molecules 23 (9): 2201. https://doi.org/10.3390/molecules23092201.
69 69. Cicci, A., Sed, G., Jessop, P.G. et al. (2018). Circular extraction: an innovative use of switchable solvents for the biomass biorefinery. Green Chemistry 20 (17): 3908–3911. https://doi.org/10.1039/c8gc01731j.
70 70. Fu, D., Farag, S., Chaouki, J. et al. (2014). Extraction of phenols from lignin microwave‐pyrolysis oil using a switchable hydrophilicity solvent. Bioresource Technology 154: 101–108. https://doi.org/10.1016/j.biortech.2013.11.091.
71 71. Wang, C., Zhang, L., Zhou, T. et al. (2017). Synergy of Lewis and Brønsted acids on catalytic hydrothermal decomposition of carbohydrates and corncob acid hydrolysis residues to 5‐hydroxymethylfurfural. Scientific Reports 7 (1): 1,, Article ID 40908–9. https://doi.org/10.1038/srep40908.
72 72. Yu, I.K., Tsang, D.C., Yip, A.C. et al. (2016). Valorization of food waste into hydroxymethylfurfural: dual role of metal ions in successive conversion steps. Bioresource Technology 219: 338–347. https://doi.org/10.1016/j.biortech.2016.08.002.
73 73. Cai, C.M., Nagane, N., Kumar, R. et al. (2014). Coupling metal halides with a co‐solvent to produce furfural and 5‐HMF at high yields directly from lignocellulosic biomass as an integrated biofuels strategy. Green Chemistry 16 (8): 3819–3829. https://doi.org/10.1039/c4gc00747f.
74 74. Choudhary, V., Sandler, S.I., and Vlachos, D.G. (2012). Conversion of xylose to furfural using Lewis and Brønsted acid catalysts in aqueous media. ACS Catalysis 2 (9): 2022–2028. https://doi.org/10.1021/cs300265d.
75 75. Agbor, V.B., Cicek, N., Sparling, R. et al. (2011). Biomass pretreatment: fundamentals toward application. Biotechnology Advances 29 (6): 675–685. https://doi.org/10.1016/j.biotechadv.2011.05.005.
76 76. Behera, S., Arora, R., Nandhagopal, N. et al. (2014). Importance of chemical pretreatment for bioconversion of lignocellulosic biomass. Renewable and Sustainable Energy Reviews 36: 91–106. https://doi.org/10.1016/j.rser.2014.04.047.
77 77. Kumar, A.K. and Sharma, S. (2017). Recent updates on different methods of pretreatment of lignocellulosic feedstocks: a review. Bioresources and Bioprocessing 4 (1): 1–19, Article ID 7: doi: https://doi.org/10.1186/s40643-017-0137-9.
78 78. Den, W., Sharma, V.K., Lee, M. et al. (2018). Lignocellulosic biomass transformations via greener oxidative pretreatment processes: access to energy and value‐added chemicals. Frontiers in Chemistry 6: 1–23, Article ID 141. doi: https://doi.org/10.3389/fchem.2018.00141.
79 79. Satari, B., Karimi, K., and Kumar, R. (2019). Cellulose solvent‐based pretreatment for enhanced second‐generation biofuel production: a review. Sustainable Energy & Fuels 3 (1): 11–62. https://doi.org/10.1039/c8se00287h.
80 80. Mosier, N., Wyman, C., Dale, B. et al. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology 96 (6): 673–686. https://doi.org/10.1016/j.biortech.2004.06.025.
81 81. Wagner, A., Lackner, N., Mutschlechner, M. et al. (2018). Biological pretreatment strategies for second‐generation lignocellulosic resources to enhance biogas production. Energies 11 (7): 1797. https://doi.org/10.3390/en11071797.
82 82. Kucharska, K., Rybarczyk, P., Hołowacz, I. et al. (2018). Pretreatment of lignocellulosic materials as substrates for fermentation processes. Molecules 23 (11): 2937. https://doi.org/10.3390/molecules23112937.
83 83. Hou, Q., Ju, M., Li, W. et al. (2017). Pretreatment of lignocellulosic biomass with ionic liquids and ionic liquid‐based solvent systems. Molecules 22 (3): 490. https://doi.org/10.3390/molecules22030490.
84 84. Kumar, G., Dharmaraja, J., Arvindnarayan, S. et al. (2019). A comprehensive review on thermochemical, biological, biochemical and hybrid conversion methods of bio‐derived lignocellulosic molecules into renewable fuels. Fuel 251: 352–367. https://doi.org/10.1016/j.fuel.2019.04.049.
85 85. Basso, T.P. (2019). Emerging physiochemical methods for biomass pretreatment. In: Fuel Ethanol Production from Sugarcane (eds. T.P. Basso and L.C. Basso), 41–62. London: IntechOpen.
86 86. Alvira, P., Tomás‐Pejó, E., Ballesteros, M. et al. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technology 101 (13): 4851–4861. https://doi.org/10.1016/j.biortech.2009.11.093.
87 87. Guragain, Y.N. and Vadlani, P.V. (2016). Importance of biomass‐specific pretreatment methods for effective and sustainable utilization of renewable resources. In: Biotechnology and Biochemical Engineering (eds. S. Gummadi and P. Vadlani), 207–215. Singapore: Springer.
2 Biomass Processing via Acid Catalysis
Iurii Bodachivskyi1, Unnikrishnan Kuzhiumparambil2, and D. Bradley G. Williams1
1University of Technology Sydney, School of Mathematical and Physical Sciences, PO Box 123, Broadway, NSW, 2007, Australia
2University of Technology Sydney, Climate Change Cluster (C3), PO Box 123, Broadway, NSW, 2007, Australia
2.1 Introduction
Biomass consists of one or more of high‐molecular‐weight carbohydrates, such as lignin (aromatic polymers), lipids, and proteins, and is a viable renewable alternative substrate (to fossil materials) for the industrial synthesis of bulk and fine chemicals [1–5]. Model reactions of individual substances that constitute biomass show that all native (macro)molecules are convertible into a large range of low‐molecular‐weight, value‐added products through a variety of acid‐catalyzed processing steps [1–13]. Catalysis is a major pillar upon which a major portion of the global chemical industry rests, and it is