Группа авторов

Polysaccharides


Скачать книгу

graphene oxide as a nanocarrier for drug and gene delivery. Small, 7, 11, 1569–1578, 2011.

      144. Hejazi, R. and Amiji, M., Chitosan-based gastrointestinal delivery systems. J. Controlled Release, 89, 2, 151–165, 2003.

      145. Hu, H., Tang, C., Yin, C., Folate conjugated trimethyl chitosan/graphene oxide nanocomplexes as potential carriers for drug and gene delivery. Mater. Lett., 125, 82–85, 2014.

      146. Read, R.C. et al., Effective nasal influenza vaccine delivery using chitosan. Vaccine, 23, 35, 4367–4374, 2005.

      147. van der Lubben, I.M. et al., Chitosan and its derivatives in mucosal drug and vaccine delivery. Eur. J. Pharm. Sci., 14, 3, 201–207, 2001.

      148. Vila, A. et al., Low molecular weight chitosan nanoparticles as new carriers for nasal vaccine delivery in mice. Chitosan, 57, 1, 123–131, 2004.

      149. Takeuchi, H. et al., Mucoadhesive properties of carbopol or chitosan-coated liposomes and their effectiveness in the oral administration of calcitonin to rats. J. Controlled Release, 86, 2, 235–242, 2003.

      150. Aspden, T.J., Illum, L., Skaugrud, Ø., Chitosan as a nasal delivery system: evaluation of insulin absorption enhancement and effect on nasal membrane integrity using rat models. Eur. J. Pharm. Sci., 4, 1, 23–31, 1996.

      151. Muzzarelli, R., Chitins and chitosans for the repair of wounded skin, nerve, cartilage and bone. Carbohydr. Polym., 76, 167–182, 2009.

      152. Sirica, A.E. and Woodman, R.J., Selective Aggregation of L1210 Leukemia Cells by the Polycation Chitosan23. JNCI: J. Natl. Cancer Inst., 47, 2, 377–388, 1971.

      153. Ouchi, T. et al., Design of Chitosan-5Fu Conjugate Exhibiting Antitumor Activity. J. Macromol. Sci.: Part A—Chemistry, 28, 10, 959–975, 1991.

      154. Zaid, S.A.A.-L. et al., Antiviral Activities and Phytochemical Constituents of Egyptian Marine Seaweeds (Cystoseira myrica (S.G. Gmelin) C. Agardh and Ulva lactuca Linnaeus) Aqueous Extract. Egypt. J. Hosp. Med., 64, 1, 422–429, 2016.

      155. Venugopal, V., Biomedical Applications of Marine Polysaccharides: An Overview, in: Marine Polysaccharides: Food Applications, V. Venugopal, (Ed.), pp. 331–351, CRC Press, Boca Raton, 2011.

      156. Jeon, Y.J. and Kim, S., Antitumor activity of chitosan oligosaccharides produced in ultrafiltration membrane reactor system. J. Microbiol. Biotechnol., 12, 503–507, 2002.

      157. Qi, L. and Xu, Z., In vivo antitumor activity of chitosan nanoparticles. Bioorg. Med. Chem. Lett., 16, 16, 4243–4245, 2006.

      158. Ronghua, H., Yumin, D., Jianhong, Y., Preparation and anticoagulant activity of carboxybutyrylated hydroxyethyl chitosan sulfates. Carbohydr. Polym., 51, 431–438, 2003.

      159. Vikhoreva, G. et al., Preparation and anticoagulant activity of a low-molecular-weight sulfated chitosan. Carbohydr. Polym., 62, 4, 327–332, 2005.

      160. Vongchan, P. et al., Anticoagulant activity of a sulfated chitosan. Carbohydr. Res., 337, 13, 1239– 1242, 2002.

      161. Hayashi, K. and Ito, M., Antidiabetic action of low molecular weight chitosan in genetically obese diabetic KK-Ay mice. Biol. Pharm. Bull., 25, 2, 188–192, 2002.

      162. Kumar, S.G. et al., Plasma proteome analysis for anti-obesity and anti-diabetic potentials of chitosan oligosaccharides in ob/ob mice. Proteomics, 9, 8, 2149–2162, 2009.

      163. Lee, H.-W. et al., Antidiabetic effects of chitosan oligosaccharides in neonatal Streptozotocininduced noninsulin-dependent diabetes mellitus in rats. Biol. Pharm. Bull., 26, 8, 1100–1103, 2003.

      165. Iriti, M. and Varoni, E.M., Chitosan-induced antiviral activity and innate immunity in plants. Environ. Sci. Pollut. Res., 22, 4, 2935–2944, 2015.

      166. Kulikov, S.N. et al., Effect of the molecular weight of chitosan on its antiviral activity in plants. Appl. Biochem. Microbiol., 42, 2, 200–203, 2006.

      167. Mori, Y. et al., Antiviral activity of silver nanoparticle/chitosan composites against H1N1 influenza A virus. Nanoscale Res. Lett., 8, 1, 93, 2013.

      168. Jin, H.-j. et al., Urokinase-coated chitosan nanoparticles for thrombolytic therapy: preparation and pharmacodynamics in vivo. J. Thromb. Thrombolysis, 36, 4, 458–468, 2013.

      169. Pan, M. et al., Porous chitosan microspheres containing zinc ion for enhanced thrombosis and hemostasis. Mater. Sci. Eng.: C, 85, 27–36, 2018.

      170. Santhosh, S. et al., Hepatoprotective activity of chitosan against isoniazid and rifampicin-induced toxicity in experimental rats. Eur. J. Pharmacol., 572, 1, 69–73, 2007.

      171. Subhapradha, N. et al., Hepatoprotective effect of β-chitosan from gladius of Sepioteuthis lessoniana against carbon tetrachloride-induced oxidative stress in Wistar rats. Appl. Biochem. Biotechnol., 172, 1, 9–20, 2014.

      172. Tzankova, V. et al., Hepatoprotective and antioxidant activity of quercetin loaded chitosan/ alginate particles in vitro and in vivo in a model of paracetamol-induced toxicity. Biomed. Pharmacother., 92, 569–579, 2017.

      173. Blockx, J. et al., Unravelling the mechanism of chitosan-driven flocculation of microalgae in seawater as a function of pH. ACS Sustainable Chem. Eng., 6, 9, 11273–11279, 2018.

      174. Bracharz, F. et al., Harvest of the oleaginous microalgae Scenedesmus obtusiusculus by flocculation from culture based on natural water sources. Front. Bioeng. Biotechnol., 6, 200–200, 2018.

      175. Chua, E.T. et al., Efficient harvesting of Nannochloropsis microalgae via optimized chitosan-mediated flocculation. Global Challenges, 3, 1, 1800038, 2019.

      176. Morales, J., de la Noüe, J., Picard, G., Harvesting marine microalgae species by chitosan flocculation. Aquacult. Eng., 4, 4, 257–270, 1985.

      177. Lee, K.Y. and Mooney, D.J., Alginate: Properties and biomedical applications. Prog. Polym. Sci., 37, 1, 106–126, 2012.

      178. Król, Ż. et al., Cytotoxicity, bactericidal, and antioxidant activity of sodium alginate hydrosols treated with direct electric current. Int. J. Mol. Sci., 18, 3, 678, 2017.

      179. Jönsson, M. et al., Extraction and Modification of Macroalgal Polysaccharides for Current and Next-Generation Applications. Molecules, 25, 4, 930, 2020.

      180. Silva, E.A. and Mooney, D.J., Effects of VEGF temporal and spatial presentation on angiogenesis. Biomaterials, 31, 6, 1235–1241, 2010.

      181. Kindness, G., Williamson, F.B., Long, W.F., Effect of polyanetholesulphonic acid and xylan sulphate on antithrombin III activity. Biochem. Biophys. Res. Commun., 88, 3, 1062–1068, 1979.

      182. Cáceres, P.J. et al., Carrageenans from chilean samples of Stenogramme interrupta (Phyllophoraceae): Structural analysis and biological activity. Phytochemistry, 53, 1, 81–86, 2000.

      183. Yuan, H. et al., Immunomodulation and antitumor activity of κ-carrageenan oligosaccharides. Cancer Lett., 243, 2, 228–234, 2006.

      184. Picker, K.M., The use of carrageenan in mixture with microcrystalline cellulose and its functionality for making tablets. Eur. J. Pharm. Biopharm., 48, 1, 27–36, 1999.

      185. Cody, B., Argyrios, M., Anargyros, X., Encapsulation and Controlled Release of Recombinant Human Erythropoietin from Chitosan-Carrageenan Nanoparticles. Curr. Drug Deliv., 9, 5, 527–537, 2012.