resource in the production of high-value compounds, whose commercialization potential has increased in recent years, still have compounds to be discovered. High-value compounds obtained from seaweeds; fat and fatty acids, proteins, carbohydrates (sugars), pigments, minerals, vitamins, sterols, antioxidants and bioactive polyphenols are successfully found applications in pharmaceutical, food and healthcare, etc. industries.
Among several seaweed polysaccharides, their biological (biocompatibility, cell adhesion, cell proliferation, gel-forming ability, collagen matrix formation) and techno-functional (emulsification, gelation, foaming) properties based on its unique structure. With the increasing concern for “natural” and “functional” material for pharmaceutical, food and medical applications, seaweed polysaccharides are seen great interest.
References
1. Dhargalkar, V.K. and Pereira, N., Seaweed: Promising plant of the millennium. Sci. Cult., 71, 60–66, 2005.
2. Margulis, L. and Chapman, M.J., Five kingdoms: An illustrated guide to the phyla of life on Earth, 3rd ed., Academic Press, Elsevier, San Diego, CA, 2009.
3. Evangelista, V., Frassanito, A.M., Passarelli, V., Barsanti, L., Gualtieri, P., Microspectroscopy of the photosynthetic compartment of algae. Photochem. Photobiol., 82, 4, 1039, 2006.
4. Melo, M.R.S., Feitosa, J.P.A., Freitas, A.L.P., De Paula, R.C.M., Isolation and characterization of soluble sulfated polysaccharide from the red seaweed Gracilaria cornea. Carbohydr. Polym., 49, 4, 491, 2002.
5. Hii, S.L., Lim, J., Ong, W.T., Wong, C.L., Agar from Malaysian red seaweed as potential material for synthesis of bioplastic film. J. Eng. Sci. Technol., 7, 1, 2016.
6. Rhein-Knudsen, N., Ale, M.T., Meyer, A.S., Seaweed hydrocolloid production: An update on enzyme assisted extraction and modification technologies. Mar. Drugs, 13, 6, 3340, 2015.
7. Aliste, A.J., Vieira, F.F., Del Mastro, N.L., Radiation effects on agar, alginates and carrageenans to be used as food additives. Radiat. Phys. Chem., 57, 3, 305, 2000.
8. Van de Velde, F., Knutsen, S.H., Usov, A.I., Rollema, H.S., Cerezo, A.S., 1H and 13C high resolution NMR spectroscopy of carrageenans: Application in research and industry. Trends Food Sci. Technol., 13, 3, 73, 2002.
9. Jol, C.N., Neiss, T.G., Penninkhof, B., Rudolph, B., De Ruiter, G.A., A novel high-performance anion-exchange chromatographic method for the analysis of carrageenans and agars containing 3, 6-anhydrogalactose. Anal. Biochem., 268, 2, 213, 1999.
10. Alba, K. and Kontogiorgos, V., Seaweed Polysaccharides (Agar, Alginate, Carrageenan), pp. 240– 250, University of Huddersfield, Huddersfield, United Kingdom, Encyclopedia of Food Chemistry, Elsevier, Amsterdam, Netherlands, 2018.
11. Rioux, L.E. and Turgeon, S.L., Seaweed carbohydrates, in: Seaweed sustainability, pp. 141–192, Academic Press, Elsevier, USA, 2015.
12. Bixler, H.J. and Porse, H., A decade of change in the seaweed hydrocolloids industry. J. Appl. Phycol., 23, 3, 321, 2011.
13. Meena, R., Prasad, K., Ganesan, M., Siddhanta, A.K., Superior quality agar from Gracilaria species (Gracilariales, Rhodophyta) collected from the Gulf of Mannar, India. J. Appl. Phycol., 20, 4, 397, 2008.
14. Marinho-Soriano, E. and Bourret, E., Effects of season on the yield and quality of agar from Gracilaria species (Gracilariaceae, Rhodophyta). Bioresour. Technol., 90, 3, 329, 2003.
15. Freile-Pelegrın, Y. and Murano, E., Agars from three species of Gracilaria (Rhodophyta) from Yucatán Peninsula. Bioresour. Technol., 96, 3, 295, 2005.
16. Sousa, A.M., Alves, V.D., Morais, S., Delerue-Matos, C., Gonçalves, M.P., Agar extraction from integrated multitrophic aquacultured Gracilaria vermiculophylla: Evaluation of a microwave-assisted process using response surface methodology. Bioresour. Technol., 101, 9, 3258, 2010.
17. Tanna, B. and Mishra, A., Nutraceutical potential of seaweed polysaccharides: Structure, bioactivity, safety, and toxicity. Compr. Rev. Food Sci. Food Saf., 18, 3, 817, 2019.
18. Pereira-Pacheco, F., Robledo, D., Rodríguez-Carvajal, L., Freile-Pelegrín, Y., Optimization of native agar extraction from Hydropuntia cornea from Yucatán, México. Bioresour. Technol., 98, 6, 1278, 2007.
19. Marinho-Soriano, E. and Bourret, E., Polysaccharides from the red seaweed Gracilaria dura (Gracilariales, Rhodophyta). Bioresour. Technol., 96, 3, 379, 2005.
20. Romero, J.B., Villanueva, R.D., Montaño, M.N.E., Stability of agar in the seaweed Gracilaria eucheumatoides (Gracilariales, Rhodophyta) during postharvest storage. Bioresour. Technol., 99, 17, 8151, 2008.
21. Arvizu-Higuera, D.L., Rodríguez-Montesinos, Y.E., Murillo-Álvarez, J.I., Muñoz-Ochoa, M., Hernández-Carmona, G., Effect of alkali treatment time and extraction time on agar from Gracilaria vermiculophylla, in: Nineteenth International Seaweed Symposium, Springer, Dordrecht, pp. 65–69, 2007.
22. Oyieke, H.A., The yield, physical and chemical properties of agar gel from Gracilaria species (Gracilariales, Rhodophyta) of the Kenya Coast. Hydrobiologia, 260, 1, 613, 1993.
23. Kumar, V. and Fotedar, R., Agar extraction process for Gracilaria cliftonii. Carbohydr. Polym., 78, 4, 813, 2009.
24. Cardozo, K.H., Guaratini, T., Barros, M.P., Falcão, V.R., Tonon, A.P., Lopes, N.P. et al., Metabolites from algae with economical impact. Comp. Biochem. Physiol. C Toxicol. Pharmacol., 146, 1–2, 60, 2007.
25. Hamed, I., Özogul, F., Özogul, Y., Regenstein, J.M., Marine bioactive compounds and their health benefits: A review. Compr. Rev. Food Sci. Food Saf., 14, 4, 446, 2015.
26. Kraan, S., Algal polysaccharides, novel applications and outlook, in: Carbohydrates— Comprehensive Studies on Glycobiology and Glycotechnology, pp. 489–582, IntechOpen, Rijeka, Croatia, 2012.
27. Chen, X.Q., Microwave-assisted extraction of polysaccharides from Solanum nigrum. J. Cent. South Univ. T., 12, 5, 556, 2005.
28. Holdt, S.L. and Kraan, S., Bioactive compounds in seaweed: functional food applications and legislation. J. Appl. Phycol., 23, 3, 543, 2011.
29. Wijesekara, I., Pangestuti, R., Kim, S.K., Biological activities and potential health benefits of sulfated polysaccharides derived from marine algae. Carbohydr. Polym., 84, 1, 14, 2011.
30. Usman, A., Khalid, S., Usman, A., Hussain, Z., Wang, Y., Algal Polysaccharides, Novel Application, and Outlook, in: Algae Based Polymers, Blends, and Composites, pp. 115–153, 2017.
31. Lahaye, M., Developments on gelling algal galactans, their structure and physico-chemistry. J. Appl. Phycol., 13, 2, 173, 2001.
32. Campo, V.L., Kawano, D.F., da Silva Jr., D.B., Carvalho, I., Carrageenans: Biological properties, chemical modifications and structural analysis—A review. Carbohydr. Polym., 77, 2, 167, 2009.
33. Cunha, L. and Grenha, A., Sulfated seaweed polysaccharides as multifunctional materials in drug delivery applications. Mar. Drugs, 14, 3, 42, 2016.
34. Li, L., Ni, R., Shao, Y., Mao, S., Carrageenan and its applications in drug delivery. Carbohydr. Polym., 103, 1, 2014.
35. Bui, T.N.T.V., Structure, Rheological Properties and Connectivity of Gels Formed by Carrageenan Extracted from Different Red Algae Species (Doctoral dissertation), University of Le Mans, Le Mans, France, 2019.
36. Hernandez-Carmona, G., Freile-Pelegrín, Y., Hernández-Garibay, E., Conventional and alternative technologies for the extraction of algal polysaccharides, in: Functional ingredients from algae for foods and nutraceuticals, pp. 475–516, Woodhead Publishing, United Kingdom, 2013.
37. Burey, P., Bhandari, B.R., Howes, T., Gidley,