Wu, G., Principles of Animal Nutrition, CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, USA, 2017.
19. Cooper, G.M., The Cell, in: The Cell: A Molecular Approach, 2nd edition, 2000.
20. Berg, J., Tymoczko, J., Stryer, L., Complex Carbohydrates Are Formed by Linkage of Monosaccharides, Biochemistry, 5th edition, W. H. Freeman and Company, New York, USA, 2002.
21. Hui, Y.H., Culbertson, J.D., Duncan, S.E., Legarreta, I.G., Li-Chan, E.C.Y., Ma, C.Y., Manley, C., McMeekin, T., Nip, W.K., Nollet, L.M.L., Rahman, M.S., Toldrá, F., Xiong, Y.L., Handbook of Food Science, Technology, and Engineering, CRC Press Taylor & Francis Group 6000 Broken Sound Parkway NW, Suite 300 Boca Raton, USA, 2005.
22. Eggleston, G. and Doyle, J.P., Polysaccharides: Molecules, clusters, networks, and interactions. ACS Symp. Ser., 2006.
23. Persin, Z., Stana-Kleinschek, K., Foster, T.J., Van Dam, J.E.G., Boeriu, C.G., Navard, P., Challenges and opportunities in polysaccharides research and technology: The EPNOE views for the next decade in the areas of materials, food and health care. Carbohydr. Polym., 84, 1, 22–32, 2011.
24. Nie, S., Cui, S.W., Xie, M., Bioactive Polysaccharides, Elsevier, Academic Press, Cambridge, Massachusetts, USA, 2018.
25. Ullah, S., Khalil, A.A., Shaukat, F., Song, Y., Sources, Extraction and Biomedical Properties of Polysaccharides. Foods, 8, 8, 304, 1–23, 2019.
26. Chung, T.W., Choi, H.J., Kim, S.J., Kwak, C.H., Song, K.H., Jin, U.H., Chang, Y.C., Chang, H.W., Lee, Y.C., Ha, K.T., Kim, C.H., The ganglioside GM3 is associated with cisplatin-induced apoptosis in human colon cancer cells. PLoS One, 9, 5, e92786, 2014.
27. Capuano, E., The behavior of dietary fiber in the gastrointestinal tract determines its physiological effect. Crit. Rev. Food Sci. Nutr., 57, 16, 3543–3564, 2017.
28. Slavin, J., Fiber and prebiotics: Mechanisms and health benefits. Nutrients, 5, 4, 1417–1435, 2013.
29. Jones, J.M., CODEX-aligned dietary fiber definitions help to bridge the “fiber gap”. Nutr. J., 13, 34, 2014.
30. Verma, A.K. and Banerjee, R., Dietary fibre as functional ingredient in meat products: A novel approach for healthy living—A review. J. Food Sci. Technol., 47, 3, 247–257, 2010.
31. Shimizu, H., Masujima, Y., Ushiroda, C., Mizushima, R., Taira, S., Ohue-Kitano, R., Kimura, I., Dietary short-chain fatty acid intake improves the hepatic metabolic condition via FFAR3. Sci. Rep., 9, 16574, 2019.
32. Ahmadi, S., Mainali, R., Nagpal, R., Sheikh-Zeinoddin, M., Soleimanian-Zad, S., Wang, S., Deep, G., Kumar Mishra, S., and Yadav, H., Dietary Polysaccharides in the Amelioration of Gut Microbiome Dysbiosis and Metabolic Diseases. Obes. Control Ther., 4, 3, 10.15226/2374-8354/4/2/00140, 2017.
33. Lunn, J. and Buttriss, J.L., Carbohydrates and dietary fibre. Nutr. Bull., 32, 1, 21–64, 2007.
34. Holscher, H.D., Dietary fiber and prebiotics and the gastrointestinal microbiota. Gut Microbes, 8, 2, 172–184, 2017.
35. Chambers, E.S., Preston, T., Frost, G., Morrison, D.J., Role of Gut Microbiota-Generated Short-Chain Fatty Acids in Metabolic and Cardiovascular Health. Curr. Nutr. Rep., 7, 4, 198–206, 2018.
36. Baxter, N.T., Schmidt, A.W., Venkataraman, A., Kim, K.S., Waldron, C., Schmidt, T.M., Dynamics of human gut microbiota and short-chain fatty acids in response to dietary interventions with three fermentable fibers. MBio, 10, 1, e02566-18, 2019.
37. Silva, Y.P., Bernardi, A., Frozza, R.L., The Role of Short-Chain Fatty Acids From Gut Microbiota in Gut-Brain Communication. Front. Endocrinol. (Lausanne), 11, 25, 2020.
38. Dalile, B., Van Oudenhove, L., Vervliet, B., Verbeke, K., The role of short-chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. Hepatol., 16, 8, 461–478, 2019.
39. Glowacki, J. and Mizuno, S., Collagen scaffolds for tissue engineering. Biopolymers, 89, 5, 338– 44, 2008.
40. Tiwari, S., Patil, R., Bahadur, P., Polysaccharide based scaffolds for soft tissue engineering applications. Polymers (Basel), 11, 1, 1, 2018.
41. Jay, S.M., Shepherd, B.R., Bertram, J.P., Pober, J.S., Saltzman, W.M., Engineering of multifunctional gels integrating highly efficient growth factor delivery with endothelial cell transplantation. FASEB J., 22, 8, 2949–56, 2008.
42. Wang, D.A., Varghese, S., Sharma, B., Strehin, I., Fermanian, S., Gorham, J., Fairbrother, D.H., Cascio, B., Elisseeff, J.H., Multifunctional chondroitin sulphate for cartilage tissue-biomaterial integration. Nat. Mater., 6, 5, 385–92, 2007.
43. Feng, Z., Kerm, S.C., Wey, F.O., Mhaisalka, P.S., Chan, V., Ratner, B.D., Dual requirements of extracellular matrix protein and chitosan for inducing adhesion contact evolution of esophageal epithelia. J. Biomed. Mater. Res.—Part A, 82, 4, 788–801, 2007.
44. Kogan, G., Šoltés, L., Stern, R., Gemeiner, P., Hyaluronic acid: A natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol. Lett., 29, 1, 17–25, 2007.
45. Sun, J. and Tan, H., Alginate-based biomaterials for regenerative medicine applications. Materials (Basel), 6, 4, 1285–1309, 2013.
46. Hickey, R.J., Modulevsky, D.J., Cuerrier, C.M., Pelling, A.E., Customizing the Shape and Microenvironment Biochemistry of Biocompatible Macroscopic Plant-Derived Cellulose Scaffolds. ACS Biomater. Sci. Eng., 4, 11, 3726–3736, 2018.
47. Lee, J., Jung, H., Park, N., Park, S.H., Ju, J.H., Induced Osteogenesis in Plants Decellularized Scaffolds. Sci. Rep., 9, 1, 20194, 2019.
48. Courtenay, J.C., Sharma, R.I., Scott, J.L., Recent advances in modified cellulose for tissue culture applications. Molecules, 23, 3, 654, 2018.
49. Hickey, R.J. and Pelling, A.E., Cellulose biomaterials for tissue engineering. Front. Bioeng. Biotechnol., 7, 45, 2019.
50. Märtson, M., Viljanto, J., Hurme, T., Laippala, P., Saukko, P., Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat. Biomaterials, 20, 21, 1989–95, 1999.
51. Novotna, K., Havelka, P., Sopuch, T., Kolarova, K., Vosmanska, V., Lisa, V., Svorcik, V., Bacakova, L., Cellulose-based materials as scaffolds for tissue engineering. Cellulose, 20, 2263–227, 2013.
52. Haney, A.F. and Doty, E., Comparison of the peritoneal cells elicited by oxidized regenerated cellulose (Interceed) and expanded polytetrafluoroethylene (Gore-Tex Surgical Membrane) in a murine model. Am. J. Obstet. Gynecol., 166, 4, 1137–46, 1992.
53. Costa, A.F.S., Almeida, F.C.G., Vinhas, G.M., Sarubbo, L.A., Production of bacterial cellulose by Gluconacetobacter hansenii using corn steep liquor as nutrient sources. Front. Microbiol., 8, 2027, 2017.
54. Torgbo, S. and Sukyai, P., Bacterial cellulose-based scaffold materials for bone tissue engineering. Appl. Mater. Today, 11, 34–49, 2018.
55. Gorgieva, S. and Trček, J., Bacterial cellulose: Production, modification and perspectives in biomedical applications. Nanomaterials, 9, 10, 1352, 2019.
56. Portela, R., Leal, C.R., Almeida, P.L., Sobral, R.G., Bacterial cellulose: A versatile biopolymer for wound dressing applications. Microb. Biotechnol., 12, 4, 586–610, 2019.
57. Torres, F., Commeaux, S., Troncoso, O., Biocompatibility of Bacterial Cellulose Based Biomaterials. J. Funct. Biomater., 3, 4, 864–878, 2012.
58. Jia, Y., Zhu, W., Zheng, M., Huo, M., Zhong, C., Bacterial cellulose/hyaluronic acid composite hydrogels with improved viscoelastic properties and good thermodynamic stability. Plast. Rubber Compos., 47, 4, 165–175, 2018.
59. Nair, L.S. and Laurencin,