Группа авторов

Polysaccharides


Скачать книгу

32, 8-9, 762–798, 2007.

      60. Li, J., Wan, Y., Li, L., Liang, H., Wang, J., Preparation and characterization of 2,3-dialdehyde bacterial cellulose for potential biodegradable tissue engineering scaffolds. Mater. Sci. Eng. C, 29, 5, 1635–1642, 2009.

      61. Luo, H., Xiong, G., Hu, D., Ren, K., Yao, F., Zhu, Y., Gao, C., Wan, Y., Characterization of TEMPO-oxidized bacterial cellulose scaffolds for tissue engineering applications. Mater. Chem. Phys., 143, 1, 373–379, 2013.

      62. Yadav, V., Paniliatis, B.J., Shi, H., Lee, K., Cebe, P., Kaplan, D.L., Novel in vivo-degradable cellulose-chitin copolymer from metabolically engineered Gluconacetobacter xylinus. Appl. Environ. Microbiol., 76, 18, 6257–65, 2010.

      63. Afewerki, S., Sheikhi, A., Kannan, S., Ahadian, S., Khademhosseini, A., Gelatin-polysaccharide composite scaffolds for 3D cell culture and tissue engineering: Towards natural therapeutics. Bioeng. Transl. Med., 41, 1, 96–115, 2019.

      64. Dong, Z., Yuan, Q., Huang, K., Xu, W., Liu, G., Gu, Z., Gelatin methacryloyl (GelMA)-based biomaterials for bone regeneration. RSC Adv., 9, 17737–17744, 2019.

      65. Ahmed, E.M., Hydrogel: Preparation, characterization, and applications: A review. J. Adv. Res., 6, 2, 105–21, 2015.

      66. Zhai, P., Peng, X., Li, B., Liu, Y., Sun, H., Li, X., The application of hyaluronic acid in bone regeneration. Int. J. Biol. Macromol., 151, 1224–1239, 2019.

      67. Menaa, F., Menaa, A., Menaa, B., Hyaluronic Acid and Derivatives for Tissue Engineering. J. Biotechnol. Biomater., S3, 001, 2011.

      68. Rayahin, J.E., Buhrman, J.S., Zhang, Y., Koh, T.J., Gemeinhart, R.A., High and Low Molecular Weight Hyaluronic Acid Differentially Influence Macrophage Activation. ACS Biomater. Sci. Eng., 1, 7, 481–493, 2015.

      69. Campo, G.M., Avenoso, A., Campo, S., D’Ascola, A., Nastasi, G., Calatroni, A., Molecular size hyaluronan differently modulates toll-like receptor-4 in LPS-induced inflammation in mouse chondrocytes. Biochimie, 92, 2, 204–15, 2010.

      70. Chircov, C. and Grumezescu, A.M., Bejenaru, L.E., Hyaluronic acid-based scaffolds for tissue engineering. Rom. J. Morphol. Embryol., 59, 1, 71–76, 2018.

      71. Zanchetta, P., Lagarde, N., Uguen, A., Marcorelles, P., Mixture of hyaluronic acid, chondroitin 6 sulphate and dermatan sulphate used to completely regenerate bone in rat critical size defect model. J. Cranio-Maxill. Surg., 40, 8, 783–7, 2012.

      72. Özgenel, G.Y., Effects of hyaluronic acid on peripheral nerve scarring and regeneration in rats. Microsurgery, 23, 6, 575–81, 2003.

      73. Lin, C.M., Lin, J.W., Chen, Y.C., Shen, H.H., Wei, L., Yeh, Y.S., Chiang, Y.H., Shih, R., Chiu, P.L., Hung, K.S., Yang, L.Y., Chiu, W.T., Hyaluronic acid inhibits the glial scar formation after brain damage with tissue loss in rats. Surg. Neurol., 72 Suppl 2, S50-4, 2009.

      75. Bajpai, S.K. and Sharma, S., Investigation of swelling/degradation behaviour of alginate beads crosslinked with Ca2+ and Ba2+ ions. React. Funct. Polym., 59, 2, 129–140, 2004.

      76. Sarker, B., Singh, R., Silva, R., Roether, J.A., Kaschta, J., Detsch, R., Schubert, D.W., Cicha, I., Boccaccini, A.R., Evaluation of fibroblasts adhesion and proliferation on alginate-gelatin crosslinked hydrogel. PLoS One, 9, 9, e107952, 2014.

      77. Kong, H.J., Smith, M.K., Mooney, D.J., Designing alginate hydrogels to maintain viability of immobilized cells. Biomaterials, 24, 22, 4023–9, 2003.

      78. Shachar, M., Tsur-Gang, O., Dvir, T., Leor, J., Cohen, S., The effect of immobilized RGD peptide in alginate scaffolds on cardiac tissue engineering. Acta Biomater., 7, 1, 152–62, 2011.

      79. Al-Shamkhani, A. and Duncan, R., Radioiodination of alginate via covalently-bound tyrosinamide allows monitoring of its fate in vivo. J. Bioact. Compat. Polym., 10, 1, 4–13, 1995.

      80. Bouhadir, K.H., Lee, K.Y., Alsberg, E., Damm, K.L., Anderson, K.W., Mooney, D.J., Degradation of partially oxidized alginate and its potential application for tissue engineering. Biotechnol. Prog., 17, 5, 945–50, 2001.

      81. Mokhtarzadeh, A., Alibakhshi, A., Hejazi, M., Omidi, Y., Ezzati Nazhad Dolatabadi, J., Bacterial-derived biopolymers: Advanced natural nanomaterials for drug delivery and tissue engineering. TrAC—Trend. Anal. Chem., 82, 367–384, 2016.

      82. Sharma, R. and Sharma, C.L., Macromolecular drugs: Novel strategy in target specific drug delivery. J. Clin. Diagn. Res., 2, 4, 1020, 2008.

      83. Noel, S., Fortier, C., Murschel, F., Belzil, A., Gaudet, G., Jolicoeur, M., De Crescenzo, G., Co-immobilization of adhesive peptides and VEGF within a dextran-based coating for vascular applications. Acta Biomater., 37, 69–82, 2016.

      84. Sun, G., Shen, Y.I., Kusuma, S., Fox-Talbot, K., Steenbergen, C.J., Gerecht, S., Functional neovascularization of biodegradable dextran hydrogels with multiple angiogenic growth factors. Biomaterials, 32, 1, 95–106, 2011.

      85. Bajaj, I.B., Survase, S.A., Saudagar, P.S., Singhal, R.S., Gellan gum: Fermentative production, downstream processing and applications. Food Technol. Biotechnol., 45, 4, 341–354, 2007.

      86. Prajapati, V.D., Jani, G.K., Zala, B.S., Khutliwala, T.A., An insight into the emerging exopolysaccharide gellan gum as a novel polymer. Carbohydr. Polym., 93, 2, 670–8, 2013.

      87. Silva, N.A., Cooke, M.J., Tam, R.Y., Sousa, N., Salgado, A.J., Reis, R.L., Shoichet, M.S., The effects of peptide modified gellan gum and olfactory ensheathing glia cells on neural stem/ progenitor cell fate. Biomaterials, 33, 27, 6345–54, 2012.

      88. Oliveira, J.T., Santos, T.C., Martins, L., Silva, M.A., Marques, A.P., Castro, A.G., Neves, N.M., Reis, R.L., Performance of new gellan gum hydrogels combined with human articular chondrocytes for cartilage regeneration when subcutaneously implanted in nude mice. J. Tissue Eng. Regen. Med., 3, 7, 493–500, 2009.

      89. Oliveira, J.T., Gardel, L.S., Rada, T., Martins, L., Gomes, M.E., Reis, R.L., Injectable gellan gum hydrogels with autologous cells for the treatment of rabbit articular cartilage defects. J. Orthop. Res., 28, 9, 1193–9, 2010.

      90. Silva-Correia, J., Oliveira, J.M., Caridade, S.G., Oliveira, J.T., Sousa, R.A., Mano, J.F., Reis, R.L., Gellan gum-based hydrogels for intervertebral disc tissue-engineering applications. J. Tissue Eng. Regen. Med., 5, 6, e97–107, 2011.

      91. Smith, L.J., Nerurkar, N.L., Choi, K.S., Harfe, B.D., Elliott, D.M., Degeneration and regeneration of the intervertebral disc: Lessons from development. DMM Dis. Model. Mech., 4, 1, 31–41, 2011.

      93. Mohan, T., Maver, T., Štiglic, A.D., Stana-Kleinschek, K., Kargl, R., 3D bioprinting of polysaccharides and their derivatives: From characterization to application, in: Fundamental Biomaterials: Polymers, 2018.

      94. Yanagawa, F., Sugiura, S., Kanamori, T., Hydrogel microfabrication technology toward three dimensional tissue engineering. Regen. Ther., 3, 45–57, 2016.

      95. Hong, N., Yang, G.H., Lee, J.H., Kim, G.H., 3D bioprinting and its in vivo applications. J. Biomed. Mater. Res.—Part B Appl. Biomater., 106, 1, 444–459, 2018.

      96. Murphy, S.V. and Atala, A., 3D bioprinting of tissues and organs. Nat. Biotechnol., 32, 8, 773–85, 2014.

      97. Percival, N.J., Classification of Wounds and their Management. Surg., 20, 5, 114–117, 2002.

      98. Kirker,