Группа авторов

Biogeography in the Sub-Arctic


Скачать книгу

North Atlantic spreading axis can be observed in the Icelandic eastern neo‐volcanic zone at the present day where the plume axis is presently inferred to underlie the Vatnajökull ice‐cap (Wolfe et al. 1997). Rift volcanism re‐commenced in October 2014 in the Bárđarbunga volcanic system and is currently active as I write. Volcanic cycles in Iceland are connected to rift‐jumping, thought to occur in order to bring the spreading centre over the plume axis. These cycles have an approximate life‐span of 8–12 Ma (Brooks 2011 and references therein).

Photo depicts lava fountaining along a fissure northern Iceland 1980, during an episode of extension and rift opening.

      Source: Photo by Halldór Ólafsson.

      Where uplift raises continental margins above sea‐level, their consequent sub‐aerial erosion causes relatively coarse‐grained sediments to be deposited on adjacent sub‐marine shelves. These pulse‐drive uplifts can have significant commercial consequences: for example, the Forties oil‐field is dependent on sandy reservoir rocks that resulted from continental lithosphere uplift at ~55 Ma, marking the arrival of a major thermal input (Lovell 2010). Furthermore, the changes in the elevation of the Greenland–Faeroes–Iceland and Scotland ridge over millions of years have controlled the deep‐water overflow of the Denmark Straits (Wright and Miller 1996; Nisbet et al. 2009; Poore et al. 2009, 2011).

      In the aftermath of the ocean opening there was notable uplift of the adjacent ‘trailing’ continental margins. The uplift is noteworthy in, for example, western Scotland and Norway, but is most extreme in eastern Greenland where ‘plateau lavas’ erupted close to sea‐level (and which were preceded by marine Mesozoic strata) have been raised, while remaining essentially horizontal. Among the uplifted rocks are those of Gunnbjørns Fjeld, which at 3693 m is the highest mountain in the Arctic. How much strata have been eroded from above it is unknown.

      The pre‐opening loading, by up to 7 km of basaltic lavas, would be expected to have depressed rather than elevated surfaces. However, the uplift is inferred to be the consequence of intrusion of igneous rocks deep in the crust that more than compensate for the surface loading (Larsen et al. 1998). Despite the huge volume of erupted lavas a much larger volume of magma crystallized deep in the crust as ‘underplating’. The east coast of Greenland presents an elongate area of uplift centred on that part (Kangerdlugssuaq) where the plume axis is deduced to have passed from continent to ocean (Lawver and Müller 1994).

      The tilting of the topography in northern Britain from west to east is also attributed to the process of magmatic underplating (Brodie and White 1994). Consequently, the Iceland plume has been instrumental in shaping the landscapes on either side of the ocean (Fitton and Larsen 2001).

      No serious discussion of the Atlantic opening was possible before adoption of the plate tectonic theory some 50 years ago. Since then studies have demonstrated that sea‐floor spreading has not been simple and that the concept of a mantle plume appears critical to its understanding. Opening of the ocean was a continuation of earlier continental rifting brought about by extension. The close proximity of much of the igneous activity and rifting ‘to the old orogenic sutures and/or fronts suggests that lithospheric control was an important factor in the embryonic stages of magmatism and rifting’ (Hansen et al. 2009).

      The author is very grateful to J.G. Fitton, R. Meyer and B. Lovell for help in improving the manuscript.

      1 Anderson, D.L. 2005. Scoring hotspots: The Plume and Plate Paradigms, In: Plates, Plumes and Paradigms. G.R. Foulger, J.H. Natland, D.C. Presnall and D.L. Anderson (eds). Geological Society of America, Special Paper 388, 31–54.

      2 Anderson, O.B. and Knudsen, P. (2009). DNSC08 mean sea‐surface and mean dynamic topography models. Journal of Geophysical Research 114: 1–12.

      3 Bown, J.W. and White, R.S. (1994). Variation with spreading rate of oceanic crustal thickness and geochemistry. Earth and Planetary Science Letters 121: 435–449.

      4 Brodie, J. and White, N. (1994). Sedimentary basin inversion caused by igneous underplating: Northwest European continental shelf. Geology 22: 147–150.

      5 Brooks, C.K. (1973). Rifting and doming in southern East Greenland. Nature Physical Science 244: 23–25.

      6 Brooks, C.K. (2011). The East Greenland rifted volcanic margin. Geological Survey of Denmark and Greenland Bulletin 24: 92.

      7 Egger, H., Heilman‐Clauren, C., and Schmitz, B. (2000). The Paleocene–Eocene boundary interval of a Tethyan deep‐sea section (Austria) and its correlation with the North Sea Basin. Bulletin Societé Géologique de France 171: