304
305 305
306 307
307 308
308 309
309 310
310 311
311 312
312 313
313 314
314 315
315 316
316 317
317 318
318 319
319 320
320 321
321 322
322 323
323 324
324 325
325 326
326 327
327 328
328 329
329 330
330 331
331 332
332 333
333 334
334 335
335 336
336 337
337 338
338 339
339 340
340 341
Digital System Design using FSMs
A Practical Learning Approach
Peter D. Minns
Formerly at Northumbria University Newcastle upon Tyne, UK
This edition first published 2021
© 2021 John Wiley & Sons Ltd
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by law. Advice on how to obtain permission to reuse material from this title is available at http://www.wiley.com/go/permissions.
The right of Peter D. Minns to be identified as the author of this work has been asserted in accordance with law.
Registered Offices John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK
Editorial Office The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, UK
For details of our global editorial offices, customer services, and more information about Wiley products visit us at www.wiley.com.
Wiley also publishes its books in a variety of electronic formats and by print‐on‐demand. Some content that appears in standard print versions of this book may not be available in other formats.
Limit of Liability/Disclaimer of Warranty While the publisher and authors have used their best efforts in preparing this work, they make no representations or warranties with respect to the accuracy or completeness of the contents of this work and specifically disclaim all warranties, including without limitation any implied warranties of merchantability or fitness for a particular purpose. No warranty may be created or extended by sales representatives, written sales materials or promotional statements for this work. The fact that an organization, website, or product is referred to in this work as a citation and/or potential source of further information does not mean that the publisher and authors endorse the information or services the organization, website, or product may provide or recommendations it may make. This work is sold with the understanding that the publisher is not engaged in rendering professional services. The advice and strategies contained herein may not be suitable for your situation. You should consult with a specialist where appropriate. Further, readers should be aware that websites listed in this work may have changed or disappeared between when this work was written and when it is read. Neither the publisher nor authors shall be liable for any loss of profit or any other commercial damages, including but not limited to special, incidental, consequential, or other damages.
Library of Congress Cataloging‐in‐Publication Data
Name: Minns, Peter D., author.
Title: Digital system design using FSMs : a practical learning approach / Peter D. Minns.
Description: Hoboken, NJ : Wiley, 2021. | Includes bibliographical references and index.
Identifiers: LCCN 2021015256 (print) | LCCN 2021015257 (ebook) | ISBN 9781119782704 (hardback) | ISBN 9781119782711 (adobe pdf) | ISBN 9781119782728 (epub)
Subjects: LCSH: Sequential machine theory. | Digital electronics.
Classification: LCC QA267.5.S4 M56 2021 (print) | LCC QA267.5.S4 (ebook) | DDC 621.381501/51135–dc23
LC record available at https://lccn.loc.gov/2021015256 LC ebook record available at https://lccn.loc.gov/2021015257
Cover Design: Wiley
Cover Image: (inset) Image by Peter Minns, (background) © Govindanmarudhai/Getty Images
Preface
This book is, in large part, a development of FSM‐Based Digital Design using Verilog HDL (Minns and Elliott 2008), a book I wrote with Ian Elliott. It is rather unusual in that it forms a linear programmed learning text in all chapters to help readers learn on their own.
The intention in this current version is to make use of programmed learning methods in which the chapters are made up of frames that must be read in a sequential manner. It is hoped that the book will help readers in their study of the material. There is also new content in Chapter 6, Appendix A5, and Appendix A6, as well as consideration of unused states in finite state machines (FSMs).
It is assumed that the reader has a good understanding of Verilog HDL; however, the interested reader will find that Chapters 6, 7, and 8 of Minns and Elliott (2008) provide a very good account of Verilog HDL.