a green approach. J. Photochem. Photobiol., B 161: 141–153. https://doi.org/10.1016/j.jphotobiol.2016.04.034.
42 42 Biswas, A., Bayer, I.S., Biris, A.S. et al. (2012). Advances in top‐down and bottom‐up surface nanofabrication: techniques, applications and prospects. Adv. Colloid Interface Sci. 170: 2–27. https://doi.org/10.1016/j.cis.2011.11.001.
43 43 Mirzadeh, E. and Akhbari, K. (2016). Synthesis of nanomaterials with desirable morphologies from metal–organic frameworks for various applications. CrystEngComm 18: 7410–7424. https://doi.org/10.1039/C6CE01076H.
44 44 Khlebtsov, N. and Dykman, L. (2011). Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem. Soc. Rev. 40: 1647–1671. https://doi.org/10.1039/C0CS00018C.
45 45 Wang, J., Yang, N., Tang, H. et al. (2013). Accurate control of multishelled Co3O4 hollow microspheres as high‐performance anode materials in lithium‐ion batteries. Angew. Chem. Int. Ed. 52: 6417–6420. https://doi.org/10.1002/anie.201301622.
46 46 Emery, A.A., Saal, J.E., Kirklin, S. et al. (2016). High‐throughput computational screening of perovskites for thermochemical water splitting applications. Chem. Mater. 28 https://doi.org/10.1021/acs.chemmater.6b01182.
47 47 Ingham, B. (2015). X‐ray scattering characterization of nanoparticles. Crystallogr. Rev. 21: 229–303. https://doi.org/10.1080/0889311X.2015.1024114.
48 48 Avasare, V., Zhang, Z., Avasare, D. et al. (2015). Room‐temperature synthesis of TiO2 nanospheres and their solar‐driven photoelectrochemical hydrogen production. Int. J. Energy Res. 39: 1714–1719. https://doi.org/10.1002/er.3372.
49 49 Khan, I., Ali, S., Mansha, M., and Qurashi, A. (2017). Sonochemical assisted hydrothermal synthesis of pseudo‐flower shaped Bismuth vanadate (BiVO4) and their solar‐driven water splitting application. Ultrason. Sonochem. 36: 386–392. https://doi.org/10.1016/j.ultsonch.2016.12.014.
50 50 Mansha, M., Qurashi, A., Ullah, N. et al. (2016). Synthesis of In2O3/graphene heterostructure and their hydrogen gas sensing properties. Ceram. Int. 42: 11490–11495. https://doi.org/10.1016/j.ceramint.2016.04.035.
51 51 Lykhach, Y., Kozlov, S.M., Skála, T. et al. (2015). Counting electrons on supported nanoparticles. Nat. Mater. https://doi.org/10.1038/nmat4500.
52 52 Oprea, B., Martínez, L., Román, E. et al. (2015). Dispersion and functionalization of nanoparticles synthesized by gas aggregation source: opening new routes toward the fabrication of nanoparticles for biomedicine. Langmuir 31: 13813–13820. https://doi.org/10.1021/acs.langmuir.5b03399.
53 53 Wang, Y.C., Engelhard, M.H., Baer, D.R., and Castner, D.G. (2016). Quantifying the impact of nanoparticle coatings and nonuniformities on XPS analysis: gold/silver core‐shell nanoparticles. Anal. Chem. 88: 3917–3925. https://doi.org/10.1021/acs.analchem.6b00100.
54 54 Dablemont, C., Lang, P., Mangeney, C. et al. (2008). FTIR and XPS study of Pt nanoparticle functionalization and interaction with alumina. Langmuir 24: 5832–5841. https://doi.org/10.1021/la7028643.
55 55 Pokhrel, M., Wahid, K., and Mao, Y. (2016). Systematic studies on RE2‐Hf2O7:5%Eu3+ (RE = Y, La, Pr, Gd, Er, and Lu) nanoparticles: effects of the A‐site RE3+ cation and calcination on structure and photoluminescence. J. Phys. Chem. C 120: 14828–14839. https://doi.org/10.1021/acs.jpcc.6b04798.
56 56 Muehlethaler, C., Leona, M., and Lombardi, J.R. (2016). Review of surface‐enhanced Raman scattering applications in forensic science. Anal. Chem. 88: 152–169. https://doi.org/10.1021/acs.analchem.5b04131.
57 57 Ma, S., Livingstone, R., Zhao, B., and Lombardi, J.R. (2011). Enhanced Raman spectroscopy of nanostructured semiconductor phonon modes. J. Phys. Chem. Lett. 2: 671–674. https://doi.org/10.1021/jz2001562.
58 58 Sikora, A., Shard, A.G., and Minelli, C. (2016). Size and ζ‐potential measurement of silica nanoparticles in serum using tunable resistive pulse sensing. Langmuir 32: 2216–2224. https://doi.org/10.1021/acs.Langmuir.5b04160.
59 59 Filipe, V., Hawe, A., and Jiskoot, W. (2010). Critical evaluation of nanoparticle tracking analysis (NTA) by insight to measure nanoparticles and protein aggregates. Pharm. Res. 27: 796–810. https://doi.org/10.1007/s11095-010-0073-2.
60 60 Gross, J., Sayle, S., Karow, A.R. et al. (2016). Nanoparticle tracking analysis of particle size and concentration detection in suspensions of polymer and protein samples: influence of experimental and data evaluation parameters. Eur. J. Pharm. Biopharm. 104: 30–41. https://doi.org/10.1016/j.ejpb.2016.04.013.
61 61 Cho, C.H., Aspetti, C.O., Park, J., and Agarwal, R. (2013). Silicon coupled with plasmon nanocavities generates bright visible hot luminescence. Nat. Photonics 7: 285–289.
62 62 Chowdhury, F.I., Nayfeh, M.H., and Nayfeh, A.M. (2016). Enhanced performance of thin‐film silicon solar cells with a top film of silicon nanoparticles due to down‐conversion and near resonance charge transport. J. Sol. Energy 125: 332–338.
63 63 Swinehart, D.F. (1962). The Beer‐Lambert law. J. Chem. Educ. 39: 333. https://doi.org/10.1021/ed039p333.
64 64 Peng, K., Fu, L., Yang, H., and Ouyang, J. (2016). Perovskite LaFeO3/−montmorillonite nanocomposites: synthesis, interface characteristics and enhanced photocatalytic activity. Sci. Rep. 6: 19723. https://doi.org/10.1038/srep19723.
65 65 Eustis, S. and El‐Sayed, M.A. (2006). Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35: 209–217. https://doi.org/10.1039/B514191E.
66 66 Khlebtsov, N. and Dykman, L. (2010). Optical properties andbiomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 111: 1–35. https://doi.org/10.1016/j.jqsrt.2009.07.012.
67 67 Khlebtsov, N.G. and Dykman, L.A. (2010). Optical properties and biomedical applications of plasmonic nanoparticles. J. Quant. Spectrosc. Radiat. Transfer 111: 1–35. https://doi.org/10.1016/j.jqsrt.2009.07.012.
68 68 Reiss, G. and Hutten, A. (2005). Magnetic nanoparticles: applications beyond data storage. Nat. Mater. 4: 725–726. https://doi.org/10.1038/nmat1494.
69 69 Faivre, D. and Bennet, M. (2016). Materials science: magnetic nanoparticles line up. Nature 535: 235–236.