Группа авторов

Autonomous Airborne Wireless Networks


Скачать книгу

      (2.10)StartLayout 1st Row 1st Column PL Subscript 1 Superscript normal upper G 2nd Column equals 20 log left-parenthesis StartFraction 40 pi d f Subscript c Baseline Over 3 EndFraction right-parenthesis plus min left-parenthesis 0.03 h Superscript 1.72 Baseline comma 10 right-parenthesis log left-parenthesis d right-parenthesis 2nd Row 1st Column Blank 2nd Column minus min left-parenthesis 0.44 h Superscript 1.72 Baseline comma 14.77 right-parenthesis plus 0.002 d log left-parenthesis h right-parenthesis comma EndLayout

      (2.11)PL Subscript 2 Superscript normal upper G Baseline equals PL Subscript 1 Superscript normal upper G Baseline plus 40 log left-parenthesis StartFraction d Over ModifyingAbove d With caret EndFraction right-parenthesis comma

      (2.12)StartLayout 1st Row 1st Column ModifyingAbove PL With Ì‚ Superscript normal upper G Baseline Subscript NLoS Baseline equals 2nd Column 161.04 minus 7.1 log left-parenthesis w right-parenthesis plus 7.5 log left-parenthesis h right-parenthesis minus left-parenthesis 24.37 minus 3.7 left-parenthesis StartFraction h Over h Subscript normal upper G Baseline EndFraction right-parenthesis squared right-parenthesis log left-parenthesis h Subscript normal upper G Baseline right-parenthesis 2nd Row 1st Column Blank 2nd Column plus left-parenthesis 43.42 minus 3.1 log left-parenthesis h Subscript normal upper G Baseline right-parenthesis right-parenthesis left-parenthesis log left-parenthesis d right-parenthesis minus 3 right-parenthesis plus 20 log left-parenthesis f Subscript c Baseline right-parenthesis 3rd Row 1st Column Blank 2nd Column minus left-parenthesis 3.2 log left-parenthesis 11.75 h right-parenthesis squared minus 4.97 right-parenthesis comma EndLayout

      (2.13)ModifyingAbove d With caret equals 2 pi h h Subscript normal upper G Baseline StartFraction f Subscript c Baseline Over c EndFraction comma

      For the obstructed AG propagation with the UAV altitude between 10 and 40 m, the LoS probability in the rural environment for the macro‐cell network can be computed as [7]

      (2.14)double-struck upper P Subscript LoS Superscript normal upper A Baseline equals Start 2 By 2 Matrix 1st Row 1st Column 1 comma 2nd Column if d less-than-or-equal-to d overTilde comma 2nd Row 1st Column StartFraction d overTilde Over d EndFraction plus e Superscript left-parenthesis StartFraction negative d Over p 1 EndFraction right-parenthesis left-parenthesis 1 minus StartFraction minus d overTilde Over d EndFraction right-parenthesis Baseline comma 2nd Column if d overTilde less-than d comma EndMatrix

      where

      (2.15)d overTilde equals max left-parenthesis 1350.8 log left-parenthesis h right-parenthesis minus 1602 comma 18 right-parenthesis comma

      (2.16)p 1 equals max left-parenthesis 15021 log left-parenthesis h right-parenthesis minus 160 53 comma 1000 right-parenthesis period

      The path loss for LoS and NLoS links can be computed as

      (2.18)PL Subscript NLoS Superscript normal upper A Baseline equals max left-parenthesis PL Underscript LoS Overscript normal upper A Endscripts comma negative 12 plus left-parenthesis 35 minus 5.3 log left-parenthesis h right-parenthesis right-parenthesis log left-parenthesis d right-parenthesis plus 20 log left-parenthesis StartFraction 40 pi f Subscript c Baseline Over 3 EndFraction right-parenthesis right-parenthesis period

      2.4.1.2 Small‐Scale Fading

      Small‐scale fading refers to the random fluctuations of amplitude and phase of the received signal over a short distance or a short period of time due to constructive or destructive interference of the MPC. For different propagation environments and wireless systems, different distribution models are suggested to analyze the random variations in the received signal envelop. The Rician and Rayleigh distributions are widely used models in the literature of wireless communications, where both are based on the central limit theorem. The Rician distribution provides better fit for the AA and AG channels, where the impact of LoS propagation is stronger. On the other hand, when the MPC impinges at the receiver with random amplitude and phase, the small‐scale fading effect can be captured by the Rayleigh distribution [6].

References Scenario Frequency band Fading distribution
Khawaja et al. [11] Suburban/Open field Ultra‐wideband Nakagami
Newhall et al. [12] Urban/Suburban Wideband Rayleigh, Rician
Tu and Shimamoto [13] Urban/Suburban Wideband Rician
Matolak and Sun [14] Urban/Suburban Wideband