Группа авторов

Biofuel Cells


Скачать книгу

Reactions of Glucose on Both Anode and Cathode Electrodes. Electroanal., 29, 950–954, 2017.

      110. Du, Y., Ma, F.-X., Xu, C.-Y., Yu, J., et al., Nitrogen-doped carbon nanotubes/reduced graphene oxide nanosheet hybrids towards enhanced cathodic oxygen reduction and power generation of microbial fuel cells. Nano Energy, 61, 533–539, 2019.

      111. Zhong, K., Lu, X., Dai, Y., Yang, S., et al., UiO66-NH2 as self-sacrificing template for Fe/N-doped hierarchically porous carbon with high electrochemical performance for oxygen reduction in microbial fuel cells. Electrochim. Acta, 323, 134777, 2019.

      112. Guan, Y.-F., Zhang, F., Huang, B.-C., Yu, H.-Q., Enhancing electricity generation of microbial fuel cell for wastewater treatment using nitrogen-doped carbon dots-supported carbon paper anode. J. Cleaner Prod., 229, 412–419, 2019.

      113. Zhang, G., Zhou, Y., Yang, F., Hydrogen production from microbial fuel cells-ammonia electrolysis cell coupled system fed with landfill leachate using Mo2C/N-doped graphene nanocomposite as HER catalyst. Electrochim. Acta, 299, 672–681, 2019.

      114. Guo, W., Chao, S., Chen, Q., Improved power generation using nitrogendoped 3D graphite foam anodes in microbial fuel cells. Bioprocess Biosys. Eng., 43, 143–151, 2020.

      115. Li, G., Li, Z., Xiao, X., An, Y., et al., Ultrahigh Electron-Donating Quaternary-N-Doped Reduced Graphene Oxide@Carbon Nanotubes Framework: A Covalently Coupled Catalyst Support for Enzymatic Bioelectrodes. J. Mater. Chem. A, 7, 2019.

      116. Yang, L., Zeng, X., Wang, W., Cao, D., Recent Progress in MOF-Derived, Heteroatom-Doped Porous Carbons as Highly Efficient Electrocatalysts for Oxygen Reduction Reaction in Fuel Cells. Adv. Funct. Mater., 28, 1704537, 2018.

      117. Wang, H., Wei, L., Liu, J., Shen, J., Hollow bimetal ZIFs derived Cu/Co/N co-coordinated ORR electrocatalyst for microbial fuel cells. Int. J. Hydrogen Energy, 45, 4481–4489, 2020.

      119. Zhong, K., Huang, L., Li, M., Dai, Y., et al., Cobalt/nitrogen-Co-doped nanoscale hierarchically porous composites derived from octahedral metal–organic framework for efficient oxygen reduction in microbial fuel cells. Int. J. Hydrogen Energy, 44, 30127–30140, 2019.

      120. Wang, Y., Zhong, K., Huang, Z., Chen, L., et al., Novel g-C3N4 assisted metal organic frameworks derived high efficiency oxygen reduction catalyst in microbial fuel cells. J. Power Sources, 450, 227681, 2020.

      121. Xue, W., Zhou, Q., Li, F., Ondon, B.S., Zeolitic imidazolate framework-8 (ZIF-8) as robust catalyst for oxygen reduction reaction in microbial fuel cells. J. Power Sources, 423, 9–17, 2019.

      122. Yang, R., Li, K., Lv, C., Cen, B., Liang, B., The exceptional performance of polyhedral porous carbon embedded nitrogen-doped carbon networks as cathode catalyst in microbial fuel cells. J. Power Sources, 442, 227229, 2019.

      123. Luo, X., Han, W.L., Ren, H., Zhuang, Q.Z., Metallic Organic Framework-Derived Fe, N, S co-doped Carbon as a Robust Catalyst for the Oxygen Reduction Reaction in Microbial Fuel Cells. Energies, 12, 2019.

      124. Li, X., Li, D., Zhang, Y., Lv, P., et al., Encapsulation of enzyme by metal–organic framework for single-enzymatic biofuel cell-based self-powered biosensor. Nano Energy, 68, 104308, 2020.

      125. Zhang, F., Wu, X., Gao, J., Chen, Y., et al., Fabrications of metal organic frameworks derived hierarchical porous carbon on carbon nanotubes as efficient bioanode catalysts of NAD+-dependent alcohol dehydrogenase. Electrochim. Acta, 340, 135958, 2020.

      126. Hui, Y., Ma, X., Qu, F., Flexible glucose/oxygen enzymatic biofuel cells based on three-dimensional gold-coated nickel foam. J. Solid State Electrochem., 23, 169–178, 2019.

      127. Niiyama, A., Murata, K., Shigemori, Y., Zebda, A., Tsujimura, S., High-performance enzymatic biofuel cell based on flexible carbon cloth modified with MgO-templated porous carbon. J. Power Sources, 427, 49–55, 2019.

      128. Shen, F., Pankratov, D., Halder, A., Xiao, X., et al., Two-dimensional graphene paper supported flexible enzymatic fuel cells. Nanoscale Adv., 1, 2562–2570, 2019.

      129. Huang, X., Zhang, L., Zhang, Z., Guo, S., et al., Wearable biofuel cells based on the classification of enzyme for high power outputs and lifetimes. Biosens. Bioelectron., 124–125, 40–52, 2019.

      130. Zhang, C.X., Haruyama, T., Kobatake, E., Aizawa, M., Evaluation of substi-tuted-1,10-phenanthroline complexes of osmium as mediator for glucose oxidase of Aspergillus niger. Anal. Chim. Acta, 408, 225–232, 2000.

      132. Katz, E., Bückmann, Andreas F., Willner, I., Self-Powered Enzyme-Based Biosensors. J. Amer. Chem. Soc., 123, 10752–10753, 2001.

      133. Katz, E., Riklin, A., Heleg-Shabtai, V., Willner, I., Bückmann, A.F., Glucose oxidase electrodes via reconstitution of the apo-enzyme: Tailoring of novel glucose biosensors. Anal. Chim. Acta, 385, 45–58, 1999.

      134. Bartlett, P.N., Pratt, K.F.E., Theoretical treatment of diffusion and kinetics in amperometric immobilized enzyme electrodes Part I: Redox mediator entrapped within the film. J. Electroanal. Chem., 397, 61–78, 1995.

      135. Ruff, A., Redox polymers in bioelectrochemistry: Common playgrounds and novel concepts. Current Opinion in Electrochem., 5, 66–73, 2017.

      136. Dahms, H., Electronic conduction in aqueous solution. J. Phys. Chem., 72, 362–364, 1968.

      137. Ruff, I., Friedrich, V.J., Transfer diffusion. I. Theoretical. J. Phys. Chem., 75, 3297–3302, 1971.

      138. Ugo, P., Moretto, L.M., Ion-exchange voltammetry at polymer-coated electrodes: Principles and analytical prospects. Electroanal., 7, 1105–1113, 1995.

      139. Tauhardt, L., Kempe, K., Knop, K., Altuntaş, E., et al., Linear Polyethyleneimine: Optimized Synthesis and Characterization—On the Way to “Pharmagrade” Batches. Macromol. Chem. Phys., 212, 1918–1924, 2011.

      140. Merchant, S.A., Glatzhofer, D.T., Schmidtke, D.W., Effects of Electrolyte and pH on the Behavior of Cross-Linked Films of Ferrocene-Modified Poly(ethylenimine). Langmuir, 23, 11295–11302, 2007.

      141. Merchant, S.A., Tran, T.O., Meredith, M.T., Cline, T.C., et al., High-Sensitivity Amperometric Biosensors Based on Ferrocene-Modified Linear Poly(ethylenimine). Langmuir, 25, 7736–7742, 2009.

      142. Merchant, S.A., Meredith, M.T., Tran, T.O., Brunski, D.B., et al., Effect of Mediator Spacing on Electrochemical and Enzymatic Response of Ferrocene Redox Polymers. J. Phys. Chem. C, 114, 11627–11634, 2010.

      143. Tran, T.O., Lammert, E.G., Chen, J., Merchant, S.A., et al., Incorporation of Single-Walled Carbon Nanotubes into Ferrocene-Modified Linear Polyethylenimine Redox Polymer Films. Langmuir, 27, 6201–6210, 2011.

      144. Godman, N.P., DeLuca, J.L., McCollum, S.R., Schmidtke, D.W., Glatzhofer, D.T., Electrochemical Characterization of Layer-By-Layer Assembled Ferrocene-Modified Linear Poly(ethylenimine)/Enzyme Bioanodes for Glucose Sensor and Biofuel Cell Applications. Langmuir, 32, 3541–3551, 2016.

      145. González-Guerrero, M.J., del Campo, F.J., Esquivel, J.P., Giroud, F., et al., Paper-based