Группа авторов

Environmental and Agricultural Microbiology


Скачать книгу

Potential for Inorganic and Organic Pollutants Decontamination, in: Water Biology, D.R. Khanna and R. Bhutiani (Eds.), pp. 309–317, Discovery Publishing House Pvt. Ltd., New Delhi, 2018.

      50. Chino-Flores, C., Dantán-González, E., Vázquez-Ramos, A., Tinoco-Valencia, R., Díaz-Méndez, R., Sánchez-Salinas, E., Castrejón-Godínez, M.L., Ramos-Quintana, F., Ortiz-Hernández, M.L., Isolation of the opdE gene that encodes for a new hydrolase of Enterobacter sp. capable of degrading organophosphorus pesticides. Biodegradation, 23, 387, 2012.

      51. Mulbry, W.W. and Karns, J.S., Parathion hydrolase specified by the Flavobacterium opd gene: Relationship between the gene and protein. J. Bacteriol., 171, 6740, 1989.

      52. Ortiz-Hernández, M.L., Quintero-Ramírez, R., Nava-Ocampo, A.A., Bello-Ramírez, A.M., Study of the mechanism of Flavobacterium sp. for hydrolyzing organophosphate pesticides. Fundam. Clin. Pharmacol., 17, 717, 2003.

      53. Zhang, R., Cui, Z., Jiang, J., Gu, X., Li, S., Diversity of organophosphorus pesticides degrading bacteria in a polluted soil and conservation of their organophosphorus hydrolase genes. Can. J. Microbiol., 5, 337, 2005.

      54. Chungjatupornchai, W. and Fa-Aroonsawat, S., Biodegradation of Organophosphate Pesticide Using Recombinant Cyanobacteria with Surfaceand Intracellular-Expressed Organophosphorus Hydrolase. J. Microbiol. Biotechnol., 18, 946, 2008.

      55. Mittler, R., Oxidative stress, antioxidants and stress to tolerance. Trends. Plant. Sci., 7, 405, 2002.

      56. Maurino, V.G. and Flugge, U., Experimental systems to assess the effects of reactive oxygen species in plant tissues. Plant. Signal. Behav., 3, 923, 2008.

      57. Alscher, R.G., Erturk, N., Heath, L.S., Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J. Exp. Bot., 53, 1331, 2002.

      58. Kumari, N., Narayan, O.P., Rai, L.C., Understanding butachlor toxicity in Aulosirafertilissima using physiological, biochemical and proteomic approaches. Chemosphere., 77, 1501, 2009.

      59. Kumari, N., Singh, V.K., Narayan, O.P., Rai, L.C., Toxicity of butachlor assessed by molecular docking to NusB and GroES protein. Onl. J. Bioinform., 12, 289, 2011.

      61. Agrawal, C., Sen, S., Yadav, S., Rai, S., Rai, L.C., A Novel Aldo-Keto Reductase (AKR17A1) of Anabaena sp. PCC 7120 Degrades the Rice Field Herbicide Butachlor and Confers Tolerance to Abiotic Stresses in E. coli. PLoS ONE., 10, e0137744, 2015.

      62. Gupta, S.K., Shriwastav, A., Kumari, S., Ansari, F.A., Malik, A., Bux, F., Phycoremediation of Emerging Contaminants, in: Algae and Environmental Sustainability, Developments in Applied Phycology, vol. 7, B. Singh (Eds.), pp. 129–146, Springer, India, 2015.

      63. Esperanza, M., Seoane, M., Rioboo, C., Herrero, C., Cid, A., Early alterations on photosynthesis-related parameters in Chlamydomonas reinhardtii cells exposed to atrazine: A multiple approach study. Sci. Total. Environ., 554, 237, 2016.

      64. Hemschemeier, A., Casero, D., Liu, B., Benning, C., Pellegrini, M., Happe, T., Merchant, S.S., Copper response regulator1-dependent and -independent responses of the Chlamydomonas reinhardtii transcriptome to dark anoxia. Plant Cell., 25, 3186, 2013.

      65. Tiwari, B., Verma, E., Chakrabortya, S., Srivastava, A.K., Mishra, A.K., Tolerance strategies in cyanobacterium Fischerella sp. under pesticide stress and possible role of a carbohydrate-binding protein in the metabolism of methyl parathion (MP). Int. Biodeterioration. Biodegrad., 127, 217, 2018.

      66. Corner, T.R., Synergism in the inhibition of Bacillus subtilis by combinations of lipophilic weak acids and fatty alcohols. Antimicrob. Agents. Chemother., 19, 1082, 1981.

      67. Horvath, R.S., Microbial co-metabolism and the degradation of organic compounds in nature. Bacteriol. Rev., 36, 146, 1972.

      68. Rosenzweig, W.D. and Stotzky, G., Influence of environmental factors on antagonism of fungi by bacteria in soil: nutrient levels. Appl. Environ. Microbiol., 39, 354, 1980.

      69. Chekroun, K.B., Sánchez, E., Baghour, M., The role of algae in bioremediation of organic pollutants. Int. Res J. Public. Environ. Health., 1, 19, 2014.

      70. Kobayashi, H. and Rittmann, B.E., Microbial removal of hazardous organic compounds. Environ. Sci. Technol., 16, 170A, 1982.

      71. Gibson, D.T., Microbial transformation of aromatic pollutants, in: Aquatic pollutants, O. Hutzinger, L.H. Van Lelyveld, B.C.J., Zoeteman (Eds.), Pergamon Press, New York, 1978.

      72. Steen, W.C., Paris, D.F., Baughman, G.L., Effects of sediment sorption on microbial degradation of toxic substances. Contam. Sediment., 1, 477, 1980.

      73. Leahy, J.G. and Colwell, R.R., Microbial degradation of hydrocarbons in the environment. Microbiol. Rev., 54, 305, 1990.

      75. Singh, D.K., Biodegradation and bioremediation of pesticide in soil: concept, method and recent developments. Indian J. Microbiol., 48, 35, 2008.

      76. Sethunathan, N., Megharaj, M., Chen, Z.L., Williams, B.D., Lewis, G., Naidu, R., Algal degradation of a known endocrine disrupting insecticide, α-endosulfan, and its metabolite, endosulfansulfate, in liquid medium and soil. J. Agric. Food. Chem., 52, 3030, 2004.

      77. Megharaj, M., Kantachote, D., Singleton, I., Naidu, R., Effects of long-term contamination of DDT on soil microflora with special reference to soil algae and algal transformation of DDT. Environ. Pollut., 109, 35, 2000.

      1 * Corresponding author: [email protected]; [email protected]

      2

      Microalgal Bioremediation of Toxic Hexavalent Chromium: A Review

       Pritikrishna Majhi 1, Satyabrata Nayak2 and Saubhagya Manjari Samantaray1*

       1Department of Microbiology, College of Basic Science & Humanities, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India

       2Silviculture Division, Rayagada, Odisha, India

       Abstract

      Chromium is the seventh most abundant metal in earth crust which is used in leather tanning, electroplating, pigment manufacturing, dying and production of stainless steel, refractory, ceramics, chemicals, electrode, alloy production, and wood preservation. Increased soil run off from the mining area and dumping of industrial waste increases the chromium concentration of the soil. Among the different oxidative states, Cr(III) and Cr(VI) are very stable and commonly found in nature. Consequently, hexavalent chromium at a high concentration is toxic for the plant, animal, human, as well as microbes. The microalgae would be an option for the removal and detoxification of Cr from chromium-rich soil. Chemical methods used for Cr removal from soil are quite costly with severe side effects for which this review emphasizes on the methods of biological reduction of Cr(VI) to Cr(III) using microalgae.

      Keywords: Microalgae, Cr(VI), bioremediation, chromium toxicity, mechanism