Группа авторов

Bioethics


Скачать книгу

of people than ever before (Singer 2004). There are historical reasons why third parties’ interventions in procreation are looked at with suspicion, and the shadow of eugenics seems to extend over any discussion regarding reproductive technologies and their governance (Paul 1992). Despite these worries, the regulation of new reproductive technologies will be influenced by governments’ policies, which in turn will reflect the interests of society and societal views on emerging reproductive technologies. Regarding the governance of genome editing technologies and their potential use in the context of assisted reproduction, the interests of society might play a role in two main ways: the first is whether genome editing is ethically acceptable for a large segment of society (Kitcher 2001), and second, related, is whether existing alternatives warrant the introduction of a new practice and the clinical research necessary to safely implement it. Almost every new technology introduced or discussed for potential introduction in reproduction seems to stir controversies. The recent debates on genome editing (Camporesi and Cavaliere 2016), mitochondrial replacement techniques (Appleby 2015) and ‘older’ debates on PGD (Scott 2006) are just a few instances of these controversies. However, once certain uses are constrained and lines drawn (for instance between therapeutic and enhancing uses), these technologies have been approved and, at least in certain countries, accepted by large swaths of the population. Thus, even if genome editing will be met with controversies and will encounter resistance, it does not prima facie translate into the need for banning any research involving it. On the contrary, this should translate into support for a democratic and deliberative approach to the governance of technological innovation (Jasanoff et al. 2015) and into the respecting of competing moral views on these issues (Cavaliere 2017).

      Societal interests and the costs of introducing genome editing in the context of assisted reproduction

      Returning to the relative level to evaluate clinical research, it is important to consider that improvements in the health and well‐being of future children can also be achieved by looking at alternative solutions, for instance third party reproduction or adoption. For those limited number of parents for whom PGD is not an option, the choice is not between genome editing and a sick child. The choice is much wider than that. This does not mean that the choice of adopting or relying on third party reproduction comes without a cost, or that prospective parents’ wishes should be neglected. It only means that there are other interests at stake and that there are other strategies than developing new technologies to tackle health needs.

      These considerations do not lead to the conclusion that public interest (in the form of a prudent use of resources) should be prioritised over prospective parents’ reproductive autonomy and future offspring’s welfare. On the contrary, the received view, namely the view that considers the interests of these two groups as more morally relevant than those of society, ought to be taken as the default position. But this position should not prevent us from seeking alternatives. Perfecting existing technologies such as PGD, and possibly widening the criteria of access to adoption or third party reproduction, would be a less costly and possibly quicker strategy to grant future children’s welfare while at the same time respecting prospective parents’ wishes. Making existing technologies and practices available via broader state funding schemes would allow their use by larger swaths of the population.

      In this article, I have analysed the moral case for introducing genome editing as an alternative to PGD. I have presented the reasons in favour and the two main arguments against this possibility, namely safety and germline modifications. After presenting some of the available data on the safety of CRISPR, I have argued that concerns with germline modifications do not represent a compelling argument against the introduction of genome editing into the clinic. I have then turned to arguments in favour of genome editing and concluded that there seems to be a prima facie case in favour of starting clinical research with CRISPR. In the last section, I have focused on the moral reasons that are normally taken into account in debates on reproductive technologies, namely the welfare of future children, the reproductive autonomy of the parents and the interests of society. I have showed that a closer look at genome editing in light of these moral reasons seems to generate some additional reasons for caution in accepting genome editing as a new reproductive option. These reasons may entail shifting from funding new resources, such as CRISPR, and advocating for its introduction in the name of values such as reproductive autonomy and the welfare of future children, to focusing on widening the criteria of access to existing options and possibly re‐thinking resource allocation and state funding of assisted reproduction. This paper does not attempt to provide decisive arguments in favour of or against the introduction of CRISPR as a new reproductive option. As many have argued, it may be too soon to have a conclusive assessment of this possibility, if only for the dearth of empirical data regarding its safety and feasibility. Rather, this paper offers a basis to begin a discussion on the ethics of introducing genome editing as an alternative to PGD and stresses the need to consider that scientific research does not happen in a vacuum where the soundest theoretical argument wins. Rather, it happens in a context where resources are limited, where genetic parenthood is an important value cherished by many, and where technical solutions are often given preference over other strategies.

      1 Appleby, John B. 2015. The ethical challenges of the clinical introduction of mitochondrial replacement techniques. Medicine, Health Care and Philosophy