Группа авторов

Emergency Medical Services


Скачать книгу

a possible fractured jaw, and then Evaluate using the 3‐3‐2 rule, noting that they can place three fingers in the mouth, three fingers from the angle of the jaw to the mentum, and two fingers from the thyroid cartilage to the bottom of the jaw. The mandible is not receding. They assess Obstruction using a modified Mallampati, which provides a clear view of the posterior oropharynx and uvula when they suction blood from the mouth. Lastly, rather than assess neck Mobility, they remove the patient’s cervical collar and hold inline stabilization from below.

      They use an airway checklist to prepare for intubation. They check their bag‐valve‐mask, oxygen, and suction device. The IV is patent. The patient’s pulse oximetry, pulse rate, and blood pressure are normal. They deliver oxygen via nasal cannula at 15 liters per minute to provide apneic oxygenation. They prepare 8.0‐mm and 7.5‐mm endotracheal tubes. They inspect the 8.0‐mm balloon and lubricate and insert a stylet. They turn on the video laryngoscope and begin recording. The crew connects a waveform capnograph and prepares a tube holder. They identify an appropriately sized supraglottic airway and place it adjacent to the patient’s chest as a contingency. They administer rocuronium and ketamine and the patient is oxygenated with a BVM. Once the patient is no longer breathing, they place the video scope while suctioning, and pass the tube through the cords under visualization. They inflate the balloon and confirm placement by EtCO2 and five‐point auscultation. They secure the tube with a tube holder, and reassess the patient to ensure stable vitals. The crew sedates the patient and places restraints to preclude self‐extubation.

      Airway management, including endotracheal intuabtion (ETI), is an essential intervention in prehospital care [1, 2]. Airway management is a difficult process associated with potential adverse events. Numerous studies underscore the challenges in attaining and maintaining clinical proficiency. These observations underscore that airway management is not a discrete procedure but rather a comprehensive strategy of care that requires close, system‐level medical oversight. The most successful prehospital airway management programs incorporate multiple elements, including training, skills verification, equipment selection, decision support, continuing education, and total quaility management. The practicing EMS physician must be an expert in out‐of‐hospital airway management and must also be able to choose tools and skills necessary to best mitigate the specific risks within a given EMS system. The goal of this chapter is to describe the medical direction paradigms and considerations necessary for a high quality airway management program.

      Airway management in the field comes with unique challenges that differ from those of the hospital setting. Prehospital airway management occurs in an uncontrolled environment where patients are severely ill and undifferentiated. The prior medical histories of EMS patients are frequently unknown. Prehospital patients may also be situated in awkward locations such as on the floor, on a bed, or in the wreckage of a car. Prehospital clinicians, including EMS physicians, have fewer monitoring and pharmacologic options than they do in the hospital. Certain options for in‐hospital airway management (e.g., calling for specialized equipment or seeking additional expertise) are not generally available in the field. These factors increase the complexity and difficulty of airway management and underscore the need for simple and efficient approaches. The EMS medical director must be aware of these distinctions and provide appropriate guidance.

      Which airway, when, and how?

      Successful prehospital airway management relies on the optimized combination of basic, advanced, and rescue airway interventions. EMS medical directors must choose strategies appropriate for the needs of their systems based on available personnel, resources, and environment. An exclusive focus on any one management technique will limit the clinicians’ abilities to adapt to difficult situations and failed procedures. Ideally, prehospital personnel should have a predefined algorithm to rapidly shift between management techniques to achieve successful airway management.

      Considerations for basic airway interventions

      Basic interventions provide the foundation of airway care for each patient and are the safety net when advanced airway interventions are unsuccessful. Basic airway management may be the preferred technique when the time and the risks associated with performing advanced airway maneuvers outweigh the benefits of a secure airway. For example, if caring for a severely injured patient, basic airway management may be preferable when the transport time to the hospital is short or when other interventions take priority (e.g., management of massive hemorrhage or tension pneumothorax). Another example is pediatric respiratory arrest, when most EMS clinicians are more comfortable and more facile with bag‐valve‐mask ventilation than with pediatric endotracheal intubation.

      Considerations for endotracheal intubation

      Despite its role in ALS and inclusion in paramedic‐level protocols for over 4 decades, the clinical benefit of ETI in the prehospital environment is unclear [3–6]. ETI is associated with several risks, including failed intubation, unrecognized esophageal intubation, hypoxia, hypotension, bradycardia, aspiration, and airway trauma. While the risks of ETI can be mitigated through proper education and equipment, prehospital systems are often unable to make the substantial investments necessary to ensure a high degree of airway management safety. EMS medical directors must be prepared to properly educate and train their personnel in ETI, ensuring that they have the decision‐making and psychomotor skills necessary to perform the procedure. Many EMS medical directors believe that airway management training must include a minimum of didactic training on the indications, contraindications, and techniques for ETI, and simulated and live intubations in supervised environments.

      The EMS medical director must determine how to provide suitable training for and adequate current competency in ETI. Strategies may include defining a minimum number of yearly ETI experiences, focused training with simulation, and supervised experience in the operating room or emergency department. Dashboards summarizing training and clinical airway management experience can help to identify clinicians in need of additional training. In order to concentrate limited field experience opportunities, it may be appropriate to restrict the procedure to fewer people. When available, review of video laryngoscopy images may provide key learning opportunities [7].

      ETI adjuncts such as the tracheal introducer (gum elastic bougie) and video laryngoscopy may improve intubation success but at the cost of added complexity. The latter point deserves emphasis. Each newly acquired airway device increases the burden of skill maintenance. If an adjunct is deployed, the EMS medical director should consider using the device on every intubation to facilitate integration and improve skill maintenance.

      Is prehospital ETI associated with improved outcomes?

      The association between prehospital ETI and patient outcome is unclear. Most studies entail observational analyses vulnerable to confounding by indication [8, 9]. However, select randomized clincial trials comparing ETI with other airway techniques provide important data and perspectives. Gausche et al. found no differences in survival or neurological outcome between children receiving ETI and those receiving bag‐valve‐mask ventilation (BVM) [10]. Conducted in France and Belgium, the Cardiac Arrest Airway Management (CAAM) trial found no difference in survival between adult out‐of‐hospital cardiac arrests managed with ETI vs. BVM [11]. The AIRWAYS‐2 trial in the United Kingdom found no difference in survival or 30‐day functional outcome between adult out‐of‐hospital cardiac arrest (OHCA) patients receiving ETI vs. i‐gel® [12]. In the United States, the Pragmatic Airway Resuscitation Trial (PART) found improved 72‐hour survival among adult OHCA managed with the laryngeal tube vs. ETI [13].

      Are adverse events common during prehospital ETI?