требуется доказать, что 17 – нечётное число.
Допустим, что 17 – чётное число (отрицание). По определению чётных чисел, 17 должно делиться на 2 без остатка. Выполнив деление, получаем остаток. Значит, 17 не является чётным числом (отрицание отрицания) и является нечётным числом (снятие двойного отрицания = истина).
На самом деле, конечно, нечётность числа 17 следует из его определения: доказательство от противного кажется лишним. Но тут важно зафиксировать, как работают аксиомы в математике и в логике. Иногда, для более сложных случаев, удобнее идти в обход.
Математик Георг Кантор в 1891 году предложил первую версию теории множеств. Об этой теории мы поговорим подробнее в главе 6. А здесь укажем на некоторые её особенности в связи с бинарной логикой.
Вообще для бинарной логики существует простейшее множество {0; 1}, в котором всего два элемента: 0 и 1. Из этого множества можно построить четыре бинарные последовательности: 1,1; 0,1; 1,0; 0,0.
В теории множеств последовательность элементов и их значение не играет никакой роли. Например, множества {0; 1} и {1; 0} равны (эквивалентны).
В логике и в генетике, как мы убедились, это не так. Важно не только сочетание элементов, но и смысл, который мы им присваиваем (например, «1» может быть «истиной» или «рецессивным признаком»).
Однако важнейшее достоинство теории множеств состоит в её универсальности.
Множества могут быть любыми: конечными, как {0; 1}, и бесконечными – если, например, взять ряд натуральных чисел. Из этого, более мощного, множества можно построить те же четыре бинарные последовательности.
Следовательно, одни множества являются подмножествами других множеств: более мощных, конечных и бесконечных. Тогда, например, все возможные логические высказывания есть подмножество всех высказываний на данном языке, а все гены человека – подмножество всех генов человечества.
Некоторые математики были настолько очарованы теорией множеств, что посчитали возможным создать универсальную аксиоматическую математику (и логику заодно). Их назвали «формалистами».
К ним принадлежал, например, великий математик Давид Гильберт, попытавшийся обосновать тезис о существовании в математике абсолютных истин и/или аксиом. Если б замысел Гильберта удался, то вывод математических теорем в наши дни стал бы рутинным заданием в младшей школе.
С формальным подходом не согласились «интуиционисты», посчитавшие абстракции вроде бесконечных множеств бесполезными развлечениями и требовавшие конструирования цепочек непротиворечивых доказательств любых математических объектов.
Такой взгляд, в частности, выражал другой величайший математик – Анри Пуанкаре. Начальной точкой рассуждений он признавал догадку. Которая выносилась на суд коллег-учёных и, если они с ней соглашались, становилась конвенцией. Само собой, что конвенция никакой абсолютной истиной не является (это результат договорённости, подобно тому, как Джордж