Группа авторов

Spectroscopy for Materials Characterization


Скачать книгу

Spectra: Energy Levels Reconstruction

      To complete the investigation of the stationary emission process, the excitation spectrum can be recorded. It consists in registering the amplitude of the emission at a given wavelength by scanning the excitation wavelength. Instrumentally, this means that the exit monochromator reported in Figure 1.7 is at fixed wavelength, whereas the entrance monochromator changes the wavelength of the source radiation that impinges on the sample.

Schematic illustration of emission spectrum of the commercial fused quartz glass with a defined absorption spectrum.

      1 1 Rossi, B. (1957). Optics. Addison‐Wesley Publ. Co.

      2 2 Lakowicz, J.R. (2006). Principles of Fluorescence Spectroscopy. Springer.

      3 3 Svanberg, S. (2004). Atomic and Molecular Spectroscopy. Springer.

      4 4 Bach, H. and Neuroth, N. (1998). The Properties of Optical Glass. Springer Verlag.

      5 5 Harris, D.C. and Bertolucci, M.D. (1978). Symmetry and Spectroscopy: an Introduction to Vibrational and Electronic Spectroscopy. Oxford University Press.

      6 6 Sole’, J.G., Bausa’, L.E., and Jaque, D. (2005). An Introduction to the Optical Spectroscopy of Inorganic Solids. Wiley.

      7 7 Ferraro, J.R., Nakamoto, K., and Brown, C.W. (2003). Introductory Raman Spectroscopy. Elsevier.

      8 8 Bransden, B.H. and Joachain, C.J. (1983). Physics of Atoms and Molecules. Longman Scientific & Technical.

      9 9 Cohen‐Tannoudji, C., Diu, B., and Laloë, F. (1977). Quantum Mechanics. Wiley.

      10 10 Vij, D.R. (ed.) (1998). Luminescence of Solids. Plenum.

      11 11 Barrow, G.M. (1962). Introduction to Molecular Spectroscopy. McGraw Hill Book Company.

      12 12 Eisberg, R. and Resnick, R. (1985). Quantum Physics of Atoms, Molecules, Solids, Nuclei and Particles. Wiley.

      13 13 Steinfeld, J.I. (1985). Molecules and Radiation: An Introduction to Modern Molecular Spectroscopy, 2e. Dover Publications.

      14 14 Kittel, C. and Kroemer, E. (1980). Thermal Physics, 2e. W.H. Freeman and Company.

      15 15 Pacchioni, G., Griscom, D.L., and Skuja, L. (eds.) (2000). Defects in SiO2 and Related Dielectrics: Science and Technology. Springer.

      16 16 De Mello, J.C., Wittmann, H.F., and Friend, R.H. (1997). An improved experimental determination of external photoluminescence quantum efficiency. Adv. Mater. 9: 230–233.

      17 17 Born, M. and Oppenheimer, R. (1927). Zur Quantentheorie der Molekeln. Ann. Phys. 389: 457–484.

      18 18 Nalwa, H.S. (ed.) (2001). Silicon‐Based Materials and Devices. Academic Press.

      19 19 Huang, K. and Rhys, A. (1950). Theory of light absorption and non‐radiative transitions in F‐centres. Proc. R. Soc. A 204: 406–423.

      20 20 Taylor, J.R. (1982). An Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements. University Science Books.

      21 21 Herzberg, G. (1966). Molecular Spectra and Molecular Structure: III Electronic Spectra and Electronic Structure of Polyatomic Molecules. Van Nostrand Reinhold Company.

      22 22 Bass, M., Van Stryland, E.W., Williams, D.R., and Wolfe, W.L. (1995). Handbook of Optics, 2e. McGraw‐Hill, Inc.

      23 23 Milonni, P.W. and Eberly, J.H. (1988). Lasers. Wiley.

      24 24 Maiman, T.H. (1960). Stimulated optical radiation in Ruby. Nature 187: 493–494.

      25 25 Sze, S.M. and Lee, M.K. (2012). Semiconductor Devices – Physics and Technology, 3e. Wiley.

      26 26 Hellma GmbH & Co (2020). KG Klosterrunsstraße 5 Müllheim. www.hellma.com.

      27 27 Allen, D.W. (2007). Holmium oxide glass wavelength standards. J. Res. Natl. Instr. Stand. Technol. 112: 303–306.

      28 28 Heraeus Quarzglas Bitterfeld