ℏω 0 = 2.112 eV and plotted as a function of the distance from the laser line ω 0. The laser lineshape, acquired by the scattered light, is also shown arbitrarily scaled respect to the emission spectrum.
We now return to the experimental results on the (
Inhomogeneous broadening measured by ZPL distribution: Finally, we report the study of the inhomogeneous properties of NBOHC at the surface of silica taking advantage of time‐resolved experiments being able to detect ZPL under tunable laser excitation [29]. Figure 2.13a shows a series of time‐resolved emission spectra measured at T = 10 K with the excitation energy stepwise incremented from 1.887 to 2.077 eV (minimum step 0.003 eV); each spectrum is displayed in the vicinity of the excitation energy thus evidencing the ZPL. From these spectra, we plot in Figure 2.13b the distribution of the ZPL intensity. The experimental data are best fitted by a Gaussian curve centered at 1.995 ± 0.003 eV with FWHM of 0.042 ± 0.005 eV (340 ± 40 cm−1) that represents the inhomogeneous distribution w inh(E 00) of the electronic transitions, due to the different local environment surrounding the (
Figure 2.13 Panel (a): Time‐resolved PL spectra of surface‐NBOHC (
We observe that the main experimental outcome is the detectability of the ZPL under site‐selective excitation of inhomogeneously distributed centers, thus allowing the inhomogeneous curve to be drawn directly. The detection of the ZPL is therefore a probe of the silica structure near the NBOHC; this potential is precluded for other defects in silica, because of the stronger phonon coupling of their optical transitions. In those cases, the deconvolution between homogeneous and inhomogeneous broadening can be done only indirectly.
References
1 1 Herzberg, G. (1966). Molecular Spectra and Molecular Structure. New York: Van Nostrand Reinhold.
2 2 Rebane, K.K. (1970). Impurity Spectra of Solids. New York: Plenum Press.
3 3 Stoneham, A.M. (1975). Theory of Defects in Solids. Oxford: Clarendon Press.
4 4 Watts, R.K. (1977). Point defects in Crystals. New York: John Wiley & Sons.
5 5 Yen, W.M. and Selzer, P.M. (eds.) (1981). Laser Spectroscopy of Solids. New York: Springer‐Verlag.
6 6 Sild, O. and Haller, K. (eds.) (1988). Zero Phonon Lines and Spectral Hole Burning In Spectroscopy and Photochemistry. New York: Springer‐Verlag.
7 7 Vij, D.R. (ed.) (1998). Luminescence of Solids. New York: Plenum Press.
8 8 Franck, E.G. and Dymond, E.G. (1926). Trans. Faraday Soc. 21: 536.
9 9 Condon, E.U. (1928). Phys. Rev. 32: 858.
10 10 Cannas, M. (1998). Point defects in amorphous SiO2: optical activity in the visible, UV and vacuum‐UV spectral regions. PhD thesis, Dipartimento di Scienze Fisiche ed Astronomiche, Università di Palermo, Italy.
11 11 Skuja, L. (2000). Defects in SiO2 and Related Dielectrics: Science and Technology (eds. G. Pacchioni, L. Skuja and D.L. Griscom). USA: Kluwer Academic Publishers.
12 12 Huang, K. and Rhys, A. (1950). Proc. Roy. Soc. A204: 406.
13 13 Skuja, L., Hirano, M., Hosono, H., and Kajihara, K. (2005). Phys. Phys. Stat. Sol. (c) 2: 15.
14 14 Girard, S., Alessi, A., Richard, N. et al. (2019). Rev. Phys. 4: 100032.
15 15 Vaccaro, L., Morana, A., Radzig, V., and Cannas, M. (2011). J. Phys. Chem. C 115: 19476.
16 16 Bonacchi, S., Genovese, D., Juris, R. et al. (2011). Angew. Chem., Int. Ed. 50: 4056.
17 17 Rimola, A., Costa, D., Sodupe, M. et al. (2013). Chem. Rev. 113: 4216.
18 18 Carbonaro, C., Corpino, R., Ricci, P. et al. (2014). J. Phys. Chem. C 118: 26219.
19 19 Tarpani, L., Ruhlandt, D., Latterini, L. et al. (2016). Nano Lett. 16: 4312.
20 20 Spallino, L., Spera, M., Vaccaro, L. et al. (2014). Phys. Chem. Chem. Phys. 16: 22028.
21 21 Radzig, V.A. (2000). Defects in SiO2 and Related Dielectrics: Science and Technology. In: (eds. G. Pacchioni, L. Skuja and D.L. Griscom). USA: Kluwer Academic Publishers.
22 22 Radzig, V.A. (2001). Chem. Phys. Rep. 19: 469.
23 23 Vaccaro, L., Cannas, M., Radzig, V., and Boscaino, R. (2008). Phys. Rev. B 78: 075421.
24 24 Vaccaro, L., Cannas, M., and Radzig, V. (2008). Phys. Rev. B 78: 233408.
25 25 Vaccaro, L., Cannas, M., and Radzig, V. (2009). J. Non Cryst. Solids 355: 1020.
26 26 Suzuki, T., Skuja, L., Kajihara, K. et al. (2003). Phys. Rev. Lett. 90: 186404.
27 27 Bakos, T., Rashkeev, S.N., and Pantelides, S.T. (2004). Phys. Rev. B 70: 075203.
28 28 Giordano, L., Sushko, P.V., Pacchioni, G., and Shluger, A.L. (2007). Phys. Rev. B 75: 024109.
29 29 Vaccaro, L. and Cannas,