Группа авторов

Generalized Ordinary Differential Equations in Abstract Spaces and Applications


Скачать книгу

StartLayout 1st Row 1st Column Blank 2nd Column sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus times times left-parenthesis right-parenthesis KMS integral integral t minus minus i 1 ti of ff left-parenthesis right-parenthesis t separator d separator t times times of ff left-parenthesis right-parenthesis xi i left-parenthesis right-parenthesis minus minus tit minus minus i 1 less-than-or-slanted-equals sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar times times left-parenthesis right-parenthesis KMS integral integral t minus minus i 1 ti left-bracket right-bracket minus minus of ff left-parenthesis right-parenthesis t of ffn left-parenthesis right-parenthesis t separator d separator t 2nd Row 1st Column Blank 2nd Column plus sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus times times left-parenthesis right-parenthesis KMS integral integral t minus minus i 1 ti of ffn left-parenthesis right-parenthesis t separator d separator t times times of ffn left-parenthesis right-parenthesis xi i left-parenthesis right-parenthesis minus minus tit minus minus i 1 plus sigma-summation Underscript i equals 1 Overscript StartAbsoluteValue d EndAbsoluteValue Endscripts vertical-bar vertical-bar vertical-bar vertical-bar minus minus of ffn left-parenthesis right-parenthesis xi i of ff left-parenthesis right-parenthesis xi i left-parenthesis t Subscript i Baseline minus t Subscript i minus 1 Baseline right-parenthesis period EndLayout

      Since integral Subscript a Superscript b Baseline vertical-bar vertical-bar vertical-bar vertical-bar minus minus of ffn left-parenthesis right-parenthesis t of ff left-parenthesis right-parenthesis t d t right-arrow 0 as n tends to infinity, there exists n Subscript epsilon Baseline greater-than 0 such that the first summand in the last inequality is smaller than StartFraction epsilon Over 3 EndFraction for all n greater-than-or-slanted-equals n Subscript epsilon. Choose an n greater-than-or-slanted-equals n Subscript epsilon. Then, we can take delta such that the third summand is smaller than StartFraction epsilon Over 3 EndFraction, because it approaches integral Subscript a Superscript b Baseline vertical-bar vertical-bar vertical-bar vertical-bar minus minus of ffn left-parenthesis right-parenthesis t of ff left-parenthesis right-parenthesis t d t. In addition, once f Subscript n Baseline element-of italic upper H upper M upper S left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis, we can refine delta so that the second summand becomes smaller than StartFraction epsilon Over 3 EndFraction, and we finish the proof.

      For a proof of the next lemma, it is enough to adapt the proof found in [107, Theorem 16] for the case of Banach space-valued functions.

      Lemma 1.95: script upper L 1 left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis subset-of italic upper K upper M upper S left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis.

      Now, we are able to prove the next inclusion.

      Theorem 1.96: script upper L 1 left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis subset-of italic upper H upper M upper S left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis.

      Proof. By Lemma 1.95, script upper L 1 left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis subset-of italic upper K upper M upper S left-parenthesis left-bracket a comma b right-bracket comma upper X right-parenthesis. Then, following the steps of the proof of Lemma 1.95 and using Lemma 1.94, we obtain the desired result.

      Lemma 1.97: If , then .

      Proof. It is enough to show that every xi element-of left-bracket a comma b right-bracket has a neighborhood where f overTilde is of bounded variation. By hypothesis, given epsilon greater-than 0, there exists a gauge delta on left-bracket a comma b right-bracket such that for every delta-fine