Скотт Ааронсон

Квантовые вычисления со времен Демокрита


Скачать книгу

target="_blank" rel="nofollow" href="http://www.youtube.com/watch?v=saWCyZupO4U">www.youtube.com/watch?v=saWCyZupO4U. Здесь и далее примечания автора даются без дополнительных указаний.

      3

      www.scottaaronson.com/blog/?p=277

      4

      www.smh.com.au/news/technology/professor-claims-ad-agency-cribs-lecturenotes/2007/10/03/1191091161163.html

      5

      idle.slashdot.org/story/07/10/02/1310222/scott-aaronson-printer-shill

      6

      www.scottaaronson.com/blog/?p=297

      7

      Стандартным учебным пособием в этой области остаются «Квантовые вычисления и квантовая информация» Майкла Нильсена (Michael Nielsen) и Айзека Чуанга (Isaac Chuang).

      8

      T. Ito and T. Vidick, A Multi-prover Interactive Proof for NEXP Sound against Entangled Provers. In Proceedings of IEEE Symposium on Foundations of Computer Science (2012), pp. 243–252.

      9

      E. Schrödinger, What is Life? With Mind and Matter and Autobiographical Sketches, Cambridge University Press (reprinted edition), 2012.

      10

      У автора – «для всех» (for all). – Прим. пер.

      11

      Упрощая, автор использует далее как синонимы слова valid, которое описывает корректность (выводимость) логической формулы, и true, характеризующее истинность конкретного высказывания. – Прим. пер.

      12

      Собственным подмножеством называется подмножество, не совпадающее с самим множеством. – Прим. пер.

iVBORw0KGgoAAAANSUhEUgAAAhAAAANSCAYAAAA05/daAAAKQ2lDQ1BJQ0MgcHJvZmlsZQAAeNqdU3dYk/cWPt/3ZQ9WQtjwsZdsgQAiI6wIyBBZohCSAGGEEBJAxYWIClYUFRGcSFXEgtUKSJ2I4qAouGdBiohai1VcOO4f3Ke1fXrv7e371/u855zn/M55zw+AERImkeaiagA5UoU8Otgfj09IxMm9gAIVSOAEIBDmy8JnBcUAAPADeXh+dLA//AGvbwACAHDVLiQSx+H/g7pQJlcAIJEA4CIS5wsBkFIAyC5UyBQAyBgAsFOzZAoAlAAAbHl8QiIAqg0A7PRJPgUA2KmT3BcA2KIcqQgAjQEAmShHJAJAuwBgVYFSLALAwgCgrEAiLgTArgGAWbYyRwKAvQUAdo5YkA9AYACAmUIszAAgOAIAQx4TzQMgTAOgMNK/4KlfcIW4SAEAwMuVzZdL0jMUuJXQGnfy8ODiIeLCbLFCYRcpEGYJ5CKcl5sjE0jnA0zODAAAGvnRwf44P5Dn5uTh5mbnbO/0xaL+a/BvIj4h8d/+vIwCBAAQTs/v2l/l5dYDcMcBsHW/a6lbANpWAGjf+V0z2wmgWgrQevmLeTj8QB6eoVDIPB0cCgsL7SViob0w44s+/zPhb+CLfvb8QB7+23rwAHGaQJmtwKOD/XFhbnauUo7nywRCMW735yP+x4V//Y4p0eI0sVwsFYrxWIm4UCJNx3m5UpFEIcmV4hLpfzLxH5b9CZN3DQCshk/ATrYHtctswH7uAQKLDljSdgBAfvMtjBoLkQAQZzQyefcAAJO/+Y9AKwEAzZek4wAAvOgYXKiUF0zGCAAARKCBKrBBBwzBFKzADpzBHbzAFwJhBkRADCTAPBBCBuSAHAqhGJZBGVTAOtgEtbADGqARmuEQtMExOA3n4BJcgetwFwZgGJ7CGLyGCQRByAgTYSE6iBFijtgizggXmY4EImFINJKApCDpiBRRIsXIcqQCqUJqkV1II/ItchQ5jVxA+pDbyCAyivyKvEcxlIGyUQPUAnVAuagfGorGoHPRdDQPXYCWomvRGrQePYC2oqfRS+h1dAB9io5jgNExDmaM2WFcjIdFYIlYGibHFmPlWDVWjzVjHVg3dhUbwJ5h7wgkAouAE+wIXoQQwmyCkJBHWExYQ6gl7CO0EroIVwmDhDHCJyKTqE+0JXoS+cR4YjqxkFhGrCbuIR4hniVeJw4TX5NIJA7JkuROCiElkDJJC0lrSNtILaRTpD7SEGmcTCbrkG3J3uQIsoCsIJeRt5APkE+S+8nD5LcUOsWI4kwJoiRSpJQSSjVlP+UEpZ8yQpmgqlHNqZ7UCKqIOp9aSW2gdlAvU4epEzR1miXNmxZDy6Qto9XQmmlnafdoL+l0ugndgx5Fl9CX0mvoB+nn6YP0dwwNhg2Dx0hiKBlrGXsZpxi3GS+ZTKYF05eZyFQw1zIbmWeYD5hvVVgq9ip8FZHKEpU6lVaVfpXnqlRVc1U/1XmqC1SrVQ+rXlZ9pkZVs1DjqQnUFqvVqR1Vu6k2rs5Sd1KPUM9RX6O+X/2C+mMNsoaFRqCGSKNUY7fGGY0hFsYyZfFYQtZyVgPrLGuYTWJbsvnsTHYF+xt2L3tMU0NzqmasZpFmneZxzQEOxrHg8DnZnErOIc4NznstAy0/LbHWaq1mrX6tN9p62r7aYu1y7Rbt69rvdXCdQJ0snfU6bTr3dQm6NrpRuoW623XP6j7TY+t56Qn1yvUO6d3RR/Vt9KP1F+rv1u/RHzcwNAg2kBlsMThj8MyQY+hrmGm40fCE4agRy2i6kcRoo9FJoye4Ju6HZ+M1eBc+ZqxvHGKsNN5l3Gs8YWJpMtukxKTF5L4pzZRrmma60bTTdMzMyCzcrNisyeyOOdWca55hvtm82/yNhaVFnMVKizaLx5balnzLBZZNlvesmFY+VnlW9VbXrEnWXOss623WV2xQG1ebDJs6m8u2qK2brcR2m23fFOIUjynSKfVTbtox7PzsCuya7AbtOfZh9iX2bfbPHcwcEh3WO3Q7fHJ0dcx2bHC866ThNMOpxKnD6VdnG2ehc53zNRemS5DLEpd2lxdTbaeKp26fesuV5RruutK10/Wjm7ub3K3ZbdTdzD3Ffav7TS6bG8ldwz3vQfTw91jicczjnaebp8LzkOcvXnZeWV77vR5Ps5wmntYwbcjbxFvgvct7YDo+PWX6zukDPsY+Ap96n4e+pr4i3z2+I37Wfpl+B/ye+zv6y/2P+L/hefIW8U4FYAHBAeUBvYEagbMDawMfBJkEpQc1BY0FuwYvDD4VQgwJDVkfcpNvwBfyG/ljM9xnLJrRFcoInRVaG/owzCZMHtYRjobPCN8Qfm+m+UzpzLYIiOBHbIi4H2kZmRf5fRQpKjKqLupRtFN0cXT3LNas5Fn7Z72O8Y+pjLk722q2cnZnrGpsUmxj7Ju4gLiquIF4h/hF8ZcSdBMkCe2J5MTYxD2J43MC52yaM5zkmlSWdGOu5dyiuRfm6c7Lnnc8WTVZkHw4hZgSl7I/5YMgQlAvGE/lp25NHRPyhJuFT0W+oo2iUbG3uEo8kuadVpX2ON07fUP6aIZPRnXGMwlPUit5kRmSuSPzTVZE1t6sz9lx2S05lJyUnKNSDWmWtCvXMLcot09mKyuTDeR55m3KG5OHyvfkI/lz89sVbIVM0aO0Uq5QDhZML6greFsYW3i4SL1IWtQz32b+6vkjC4IWfL2QsFC4sLPYuHhZ8eAiv0W7FiOLUxd3LjFdUrpkeGnw0n3LaMuylv1Q4lhSVfJqedzyjlKD0qWlQyuCVzSVqZTJy26u9Fq5YxVhlWRV72qX1VtWfyoXlV+scKyorviwRrjm4ldOX9V89Xlt2treSrfK7etI66Trbqz3Wb+vSr1qQdXQhvANrRvxjeUbX21K3nShemr1js20zcrNAzVhNe1bzLas2/KhNqP2ep1/XctW/a2rt77ZJtrWv913e/MOgx0VO97vlOy8tSt4V2u9RX31btLugt2PGmIbur/mft24R3dPxZ6Pe6V7B/ZF7+tqdG9s3K+/v7IJbVI2jR5IOnDlm4Bv2pvtmne1cFoqDsJB5cEn36Z8e+NQ6KHOw9zDzd+Zf7f1COtIeSvSOr91rC2jbaA9ob3v6IyjnR1eHUe+t/9+7zHjY3XHNY9XnqCdKD3x+eSCk+OnZKeenU4/PdSZ3Hn3TPyZa11RXb1nQ8+ePxd07ky3X/fJ897nj13wvHD0Ivdi2yW3S609rj1HfnD94UivW2/rZffL7Vc8rnT0Tes70e/Tf/pqwNVz1/jXLl2feb3vxuwbt24m3Ry4Jbr1+Hb27Rd3Cu5M3F16j3iv/L7a/eoH+g/qf7T+sWXAbeD4YMBgz8NZD+8OCYee/pT/04fh0kfMR9UjRiONj50fHxsNGr3yZM6T4aeypxPPyn5W/3nrc6vn3/3i+0vPWPzY8Av5i8+/rnmp83Lvq6mvOscjxx+8znk98ab8rc7bfe+477rfx70fmSj8QP5Q89H6Y8en0E/3Pud8/vwv94Tz+4A5JREAAAAZdEVYdFNvZnR3YXJlAEFkb2JlIEltYWdlUmVhZHlxyWU8AAAEFGlUWHRYTUw6Y29tLmFkb2JlLnhtcAAAAAAAPD94cGFja2V0IGJlZ2luPSLvu78iIGlkPSJXNU0wTXBDZWhpSHpyZVN6TlRjemtjOWQiPz4gPHg6eG1wbWV0YSB4bWxuczp4PSJhZG9iZTpuczptZXRhLyIgeDp4bXB0az0iQWRvYmUgWE1QIENvcmUgNS41LWMwMTQgNzkuMTUxNDgxLCAyMDEzLzAzLzEzLTEyOjA5OjE1ICAgICAgICAiPiA8cmRmOlJERiB4bWxuczpyZGY9Imh0dHA6Ly93d3cudzMub3JnLzE5OTkvMDIvMjItcmRmLXN5bnRheC1ucyMiPiA8cmRmOkRlc2NyaXB0aW9uIHJkZjphYm91dD0iIiB4bWxuczp4bXBNTT0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wL21tLyIgeG1sbnM6c3RSZWY9Imh0dHA6Ly9ucy5hZG9iZS5jb20veGFwLzEuMC9zVHlwZS9SZXNvdXJjZVJlZiMiIHhtbG5zOnhtcD0iaHR0cDovL25zLmFkb2JlLmNvbS94YXAvMS4wLyIgeG1sbnM6ZGM9Imh0dHA6Ly9wdXJsLm9yZy9kYy9lbGVtZW50cy8xLjEvIiB4bXBNTTpEb2N1bWVudElEPSJ4bXAuZGlkOjUzRTQ0RDY4QkFGNDExRTc4NUQ1OTM2OEIzRkNCQ0QzIiB4bXBNTTpJbnN0YW5jZUlEPSJ4bXAuaWlkOjUzRTQ0RDY3QkFGNDExRTc4NUQ1OTM2OEIzRkNCQ0QzIiB4bXA6Q3JlYXRvclRvb2w9IkFkb2JlIEluRGVzaWduIENTNiAoV2luZG93cykiPiA8eG1wTU06RGVyaXZlZEZyb20gc3RSZWY6aW5zdGFuY2VJRD0idXVpZDozNDg0MjJjMi04YWUxLTRlOTUtYjRjYi1mM2QxM2UzZTkwYmYiIHN0UmVmOmRvY3VtZW50SUQ9InV1aWQ6MDU3ZDg3NzgtNWYwYi00ODYyLWIyOWEtZWMzYjVkZjA5MWEwIi8+IDxkYzpjcmVhdG9yPiA8cmRmOlNlcT4gPHJkZjpsaT5tLnBvdGFzaGtpbjwvcmRmOmxpPiA8L3JkZjpTZXE+IDwvZGM6Y3JlYXRvcj4gPGRjOnRpdGxlPiA8cmRmOkFsdD4gPHJkZjpsaSB4bWw6bGFuZz0ieC1kZWZhdWx0Ij5LdmFudG92eWUgdnljaGlzbGVuaXlhIERlbW9rcml0YS5pbmRkPC9yZGY6bGk+IDwvcmRmOkFsdD4gPC9kYzp0aXRsZT4gPC9yZGY6RGVzY3JpcHRpb24+IDwvcmRmOlJERj4gPC94OnhtcG1ldGE+IDw/eHBhY2tldCBlbmQ9InIiPz78m+oxAABjOElEQVR42uzdB7gU1f3G8bO30AQURRAbiA2NGhsW7Im9YI2996jRqFgSFdRETTS2GI0tscTeY9RYon97F3vDAogKFnq53MLd//m57zx3HLfMbLn1+3me89wLd3d2dnbmnPecOTObSqfTDgAAIIkqNgEAACBAAAAAAgQAACBAAAAAAgQAACBAAAAAECAAAEAl1LT1CsyYMcPdd999LpVK/VDQZa3lyya+rOpLL1++9eVdX57z5XM2T0GL+rKKfn/Pl5lsEqAyGhsb3eDBg93WW29NgGhLc+fOdU899RQBoutazZc/+rK9L7VZ/j7blzt9Ge3LZDZXThf6cph+/5Mvv2OTAJVRV1fnhg8fToBo6xWoqqpyPXv2JEB0TVsqHCwaBHtfPvFlvi8DfFnalz6+HO6LHalbMBqR1TK+7Bb690G+XOTLNDYNUJl2q3v37mwHdgW0kZ/5clcoPFiQWN+XNXxZx5ef+7K3L+/r72Nd5rRGJXTzZaEOfDwc4ku/0L8H+bJfwmVUaxv0LHE79iryuT1LeG4pavW+k3SmUnoOLQgYgQBamVXAF4Qavb/7ckzkMdMUKp705WT1qOeE/r6EL6fq90d8+V/k+QcphPRQUHk6y3pYr31Pl5l/YesywZeXfPmHL+9EHru6GupCLOT82ZeFtX49Cjx+gS+X+vJ1kduyT2i9bBsspvdjpzOu8aUhz3NtG4705Ze+rOjLki4z+jPOl4f0/Posz9vKl+207n/wZbAvp/uyrhrW