Группа авторов

Diatom Morphogenesis


Скачать книгу

      [2.41] Gordon, R., The Hierarchical Genome and Differentiation Waves: Novel Unification of Development, Genetics and Evolution, World Scientific & Imperial College Press, Singapore & London, 1999.

      [2.42] Gordon, R., Diatoms and nanotechnology: Early history and imagined future as seen through patents, in: The Diatoms: Applications for the EnVironmental and Earth Sciences, 2nd, J.P. Smol and E.F. Stoermer (Eds.), pp. 585–602, Cambridge University Press, Cambridge, 2010.

      [2.43] Gordon, R., Part Three: The reverse engineering road to computing life. Chapter 10: Walking the tightrope: the dilemmas of hierarchical instabilities in Turing’s morphogenesis [invited], in: The Once and Future Turing: Computing the World, S.B. Cooper and A. Hodges (Eds.), pp. 144–159, Cambridge University Press, Cambridge, 2016.

      [2.44] Gordon, R. and Aguda, B.D., Diatom morphogenesis: Natural fractal fabrication of a complex microstructure, in: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Part 1/4: Cardiology and Imaging, New Orleans, LA, USA, 4-7 Nov. 1988, Institute of Electrical and Electronics Engineers, New York, pp. 273–274, 1988.

      [2.45] Gordon, R., Bjorklund, N.K., Robinson, G.G.C., Kling, H.J., Sheared drops and pennate diatoms. Nova Hedwig., 112, Festschrift for Prof. T.V. Desikachary, 287–297, 1996.

      [2.46] Gordon, R. and Brodland, G.W., On square holes in pennate diatoms. Diatom Res., 5, 2, 409–413, 1990.

      [2.48] Gordon, R., Hanczyc, M.M., Denkov, N.D., Tiffany, M.A., Smoukov, S.K., Chapter 18: Emergence of polygonal shapes in oil droplets and living cells: The potential role of tensegrity in the origin of life, in: Habitability of the Universe Before Earth [Volume 1 in series: Astrobiology: Exploring Life on Earth and Beyond, eds. Pabulo Henrique Rampelotto, Joseph Seckbach & Richard Gordon], R. Gordon and A.A. Sharov (Eds.), pp. 427–490, Elsevier B.V., Amsterdam, 2017.

      [2.49] Gordon, R. and Jacobson, A.G., The shaping of tissues in embryos. Sci. Am., 238, 6, 106–113, 160, 1978.

      [2.50] Gordon, R., Losic, D., Tiffany, M.A., Nagy, S.S., Sterrenburg, F.A.S., The Glass Menagerie: Diatoms for novel applications in nanotechnology. Trends Biotechnol., 27, 2, 116–127, 2009.

      [2.51] Gordon, R., Sterrenburg, F.A.S., Sandhage, K., A Special Issue on Diatom Nanotechnology. J. Nanosci. Nanotechnol., 5, 1, 1–4, 2005.

      [2.52] Gordon, R. and Tiffany, M.A., Possible buckling phenomena in diatom morphogenesis, in: The Diatom World, J. Seckbach and J.P. Kociolek (Eds.), pp. 245–272, Springer, Dordrecht, The Netherlands, 2011.

      [2.53] Graham, J.H., Freeman, D.C., Emlen, J.M., Antisymmetry, directional asymmetry, and dynamic morphogenesis. Genetica, 89, 1–3, 121–137, 1993.

      [2.54] Graham, J.H., Raz, S., Hel-Or, H., Nevo, E., Fluctuating asymmetry: Methods, theory, and applications. Symmetry-Basel, 2, 2, 466–540, 2010.

      [2.55] Guan, K., Important notes on Lyapunov exponents. arXiv preprint arXiv:1401.3315., 2014.

      [2.56] Hakansson, H. and Chepurnov, V., A study of variation in valve morphology of the diatom Cyclotella meneghiniana in monoclonal cultures: effect of auxospore formation and different salinity conditions. Diatom Res., 14, 2, 251–272, 1999.

      [2.57] Hasle, G.R. and Sims, P.A., The diatom genera Stellarima and Symbolophora with comments on the genus Actinoptychus. Br. Phycol. J., 21, 97–114, 1986.

      [2.58] Herve, V., Derr, J., Douady, S., Quinet, M., Moisan, L., Lopez, P.J., Multiparametric analyses reveal the pH-dependence of silicon biomineralization in diatoms. PLoS One, 7, 10, e46722, 2012.

      [2.59] Hildebrand, M., Lerch, S.J.L., Shrestha, R.P., Understanding diatom cell wall silicification— moving forward. Front. Mar. Sci., 5, 125, 2018.

      [2.60] Hollo, G. and Novak, M., The manoeuvrability hypothesis to explain the maintenance of bilateral symmetry in animal evolution. Biol. Direct, 7, 7, 22, 2012.

      [2.61] Jacobson, A.G., Some forces that shape the nervous system. Zoon, 6, 13–21, 1978.

      [2.62] Jacobson, A.G., Computer modeling of morphogenesis. Am. Zool., 20, 4, 669–677, 1980.

      [2.63] Jacobson, A.G. and Gordon, R., Changes in the shape of the developing vertebrate nervous system analyzed experimentally, mathematically and by computer simulation. J. Exp. Zool., 197, 2, 191–246, 1976.

      [2.64] Jacobson, A.G. and Gordon, R., Nature and origin of patterns of changes in cell shape in embryos. J. Supramol. Struct., 5, 4, 371–380, 1976.

      [2.65] Jaynes, E.T., Information theory and statistical mechanics. Phys. Rev., 106, 620–630, 1957.

      [2.66] Jaynes, E.T., Gibbs vs Boltzmann entropies. Am. J. Phys., 33, 5, 391–398, 1965.

      [2.67] Jaynes, E.T., Prior probabilities. IEEE Trans. Syst. Sci. Cybern. SSC, 4, 3, 227–241, 1968.

      [2.68] Jones, J.S., Evolution: An asymmetrical view of fitness. Nature, 325, 6102, 298–299, 1987.

      [2.69] Kaczmarska, I. and Ehrman, J.M., Auxosporulation in Paralia guyana MacGillivary (Bacillariophyta) and possible new insights into the habit of the earliest diatoms. PLoS One, 10, 10, e0141150, 2015.

      [2.71] Klimontovich, Y.L., Entropy, information and ordering criteria in open systems, in: Nonlinear Dynamics in the Life and Social Sciences, vol. 320, W. Sulis and I. Trofimova (Eds.), pp. 13–32, IOS Press, Amsterdam, 2001.

      [2.72] Koenderink, J.J., vanDoorn, A.J., Kappers, A.M.L., Todd, J.T., The visual contour in depth. Percept. Psychophys., 59, 6, 828–838, 1997.

      [2.73] Korabel, N. and Barkai, E., Pesin-type identity for intermittent dynamics with a zero Lyaponov exponent. Phys. Rev. Lett., 102, 5, 050601, 2009.

      [2.74] Korabel, N. and Barkai, E., Separation of trajectories and its relation to entropy for intermittent systems with a zero Lyapunov exponent. Phys. Rev. E, 82, 016209, 2010.

      [2.75] Kotzsch, A., Pawolski, D., Milentyev, A., Shevchenko, A., Scheffel, A., Poulsen, N., Shevchenko, A., Kroger, N., Biochemical composition and assembly of biosilica-associated insoluble organic matrices from the diatom Thalassiosira pseudonana. J. Biol. Chem., 291, 10, 4982–4997, 2016.

      [2.76] Kroger, N., Prescribing diatom morphology: toward genetic engineering of biological nanomaterials. Curr. Opin. Chem. Biol., 11, 6, 662–669, 2007.

      [2.77] Kuptsov, P.V. and Parlitz, U., Theory and computation of covariant Lyapunov vectors. J. Nonlinear Sci., 22, 5, 727–762, 2012.

      [2.78] Laffargue, T., Tailleur, J., van Wijland, F., Lyapunov exponents of stochastic systems-from micro to macro. J. Stat. Mech.-Theory Exp., 2016, 034001, 2016.

      [2.79] Lee, J.-H. and Chang, M., Morphological variations of the marine diatom genus Actinoptychus in the coastal waters of Korea. Algae, 11, 4, 365–374, 1996.

      [2.80] Leeuwenberg, E., The perception of assimilation and brightness contrast as derived from code theory. Percept. Psychophys., 32, 4, 345–352, 1982.

      [2.81] Lenoci, L. and Camp, P.J., Self-assembly of peptide scaffolds in biosilica formation: computer simulations of a coarse-grained model. J. Am. Chem. Soc., 128, 31, 10111–10117, 2006.

      [2.82] Lenoci, L. and Camp, P.J., Diatom structures templated by phase-separated fluids. Langmuir, 24, 1, 217–223, 2008.