P., The Snowflake, Winter’s Secret Beauty, Voyageur Press, Stillwater, Minnesota, USA, 2003.
[2.84] Lin, S.K., Correlation of entropy with similarity and symmetry. J. Chem. Inf. Comput. Sci., 36, 3, 367–376, 1996.
[2.85] Losic, D. (Ed.), Diatom Nanotechnology: Progress and Emerging Applications, Royal Society of Chemistry, London, 2018.
[2.86] Loy, G. and Eklundh, J.O., Detecting symmetry and symmetric constellations of features. Lect. Notes Comput. Sci., 3952, 508–521, 2006.
[2.87] Ludwig, W., Das Recht-Links-Problem im Tierreich und beim Menschen: Mit einem Anhang: Rechts-Links-Merkmale der Pflanzen [The Right-Left Problem in the Animal Kingdom and in Humans: With an Appendix: Right-Left Characteristics of Plants] [German], Verlag von Julius Springer, Berlin, Germany, 1932.
[2.88] Lyapunov, A.M., The general problem of the stability of motion [Reprinted translation of: Probleme generale de la stabilite du mouvement. Commun. Soc. Math. Kharkov, 2, 1892, 265–272, 1992.
[2.89] MacArthur, B.D., Sanchez-Garcia, R.J., Anderson, J.W., Symmetry in complex networks. Discrete Appl. Math., 156, 18, 3525–3531, 2008.
[2.90] MacDonald, J.D., On the structure of the diatomaceous frustule, and its genetic cycle. Ann. Mag. Nat. Hist. Ser., 4, 3, 1–8, 1869.
[2.91] Maini, P.K., Baker, R.E., Chuong, C.M., Developmental biology. The Turing model comes of molecular age. Science, 314, 5804, 1397–1398, 2006.
[2.92] Maini, P.K., Woolley, T.E., Baker, R.E., Gaffney, E.A., Lee, S.S., Turing’s model for biological pattern formation and the robustness problem. Interface Focus, 2, 4, 487–496, 2012.
[2.93] Mann, D.G., Specifying a morphogenetic model for diatoms: an analysis of pattern faults in the Voigt zone. Nova Hedwig., Suppl., 130, 97–117, 2006.
[2.94] Mather, K., Genetical control of stability in development. Heredity, 7, 3, 297–336, 1953.
[2.95] Matsumoto, E.A. and Kamien, R.D., Elastic-instability triggered pattern formation. Phys. Rev. E, 80, 2, 15, #021604, 2009.
[2.96] Meinhardt, H. and Gierer, A., Pattern formation by local self-activation and lateral inhibition. Bioessays, 22, 8, 753–760, 2000.
[2.97] Mihelich, M., Dubrulle, B., Paillard, D., Herbert, C., Maximum entropy production vs. Kolmogorov-Sinai entropy in constrained ASEP model. Entropy, 16, 2, 1037–1046, 2014.
[2.98] Mitchell, J.G., Whence is the diversity of diatom frustules derived?, in: Diatom Nanotechnology: Progress and Emerging Applications, D. Losic (Ed.), pp. 1–13, Royal Society of Chemistry, Cambridge, 2018.
[2.99] Nesterenko, A.M., Kuznetsov, M.B., Korotkova, D.D., Zaraisky, A.G., Morphogene adsorption as a Turing instability regulator: Theoretical analysis and possible applications in multicellular embryonic systems. PLoS One, 12, 2, e0171212, 2017.
[2.100] Ornstein, D.S., Ergodic theory, randomness, and “chaos”. Science, 243, 4888, 182–187, 1989.
[2.101] Oseledec, V.I., A multiplicative ergodic theorem. Lyapunov characteristic numbers for dynamical systems. Trans. Moscow Math. Soc., 19, 197–231, 1968.
[2.102] Palmer, A.R., Symmetry breaking and the evolution of development. Science, 306, 5697, 828–833, 2004.
[2.103] Palmer, A.R. and Strobeck, C., Fluctuating asymmetry analyses revisited, Oxford University Press, Oxford, UK, 2003.
[2.104] Pappas, J.L., Geometry and topology of diatom shape and surface morphogenesis for use in applications of nanotechnology. J. Nanosci. Nanotechnol., 5, 1, 120–130, 2005.
[2.105] Pappas, J.L., Theoretical morphospace and its relation to freshwater gomphonemoid-cymbelloid diatom (Bacillariophyta) lineages. J. Biol. Syst., 13, 4, 385–398, 2005.
[2.106] Pappas, J.L., More on theoretical morphospace and its relation to freshwater gomphonemoid-cymbelloid diatom (Bacillariophyta) lineages. J. Biol. Syst., 16, 1, 119–137, 2008.
[2.107] Pappas, J.L., Multivariate complexity analysis of 3D surface form and function of centric diatoms at the Eocene-Oligocene transition. Mar. Micropaleontol., 122, 67–86, 2016.
[2.108] Pappas, J.L. and Miller, D.J., A generalized approach to the modeling and analysis of 3D surface morphology in organisms. PLoS One, 8, 10, e77551, 2013.
[2.109] Parkinson, J., Brechet, Y., Gordon, R., Centric diatom morphogenesis: A model based on a DLA algorithm investigating the potential role of microtubules. Biochim. Biophys. Acta - Mol. Cell Res., 1452, 1, 89–102, 1999.
[2.110] Pesin, J.B., Families of invariant manifolds corresponding to nonzero characteristic exponents. Math. USSR-Izv., 10, 1261–1305, 1976.
[2.111] Pfitzer, E., Untersuchungen uber Bau und Entwicklung der Bacillariaceen (Diatomaceen) [Studies on construction and development of Bacillariaceae (Diatomaceae)] [German], in: Botanische Abhandlungen aus dem Gebiete der Morphologie und Physiologie [Botanical Treatises in the Field of Morphology and Physiology], vol. [i]-vi, J.L.E.R. von Hanstein (Ed.), pp. 1–189, 186 pls, Adolph Marcus, Bonn, Germany, 1871.
[2.112] Pfitzer, E., Die Bacillariaceen (Diatomaceae) [Bacillariaceae (Diatomaceae)] [German], in: Encyklopaedie der Naturwissenschaften. I. Abteilung. I. Thiel: Handbuch der Botanik, vol. 2, A. Schenk (Ed.), pp. 403–445, Verlag von Eduard Trewendt, Breslau, 1882.
[2.113] Pickett-Heaps, J.D., The evolution of the mitotic apparatus: An attempt at comparative ultrastructural cytology in dividing plant cells. Cytobios, 1, 3, 257–280, 1969.
[2.114] Pickett-Heaps, J.D., Schmid, A.M.M., Edgar, L.A., The cell biology of diatom valve formation. Prog. Phycol. Res., 7, 1–168, 1990.
[2.115] Prasad, A. and Ramaswamy, R., Characteristic distributions of finite-time Lyapunov exponents. Phys. Rev. E, 60, 3, 2761–2766, 1999.
[2.116] Rogerson, A., Defreitas, A.S.W., Mclnnes, A.G., Observations on wall morphogenesis in Coscinodiscus asteromphalus (Bacillariophyceae). Trans. Am. Microsc. Soc., 105, 1, 59–67, 1986.
[2.117] Rose, D.T. and Cox, E.J., Some diatom species do not show a gradual decrease in cell size as they reproduce. Fundam. Appl. Limnol., 182, 2, 117–122, 2013.
[2.118] Rosenstein, M.T., Collins, J.J., De Luca, C.J., A practical method for calculating largest Lyapunov exponents from small data sets. Physica D-Nonlinear Phenomena, 65, 1–2, 117–134, 1993.
[2.119] Round, F.E., Crawford, R.M., Mann, D.G., The Diatoms, Biology & Morphology of the Genera, Cambridge University Press, Cambridge, 1990.
[2.120] Sapriel, G., Quinet, M., Heijde, M., Jourdren, L., Tanty, V., Luo, G.Z., Le Crom, S., Lopez, P.J., Genome-wide transcriptome analyses of silicon metabolism in Phaeodactylum tricornutum reveal the multilevel regulation of silicic acid transporters. PLoS One, 4, 10, e7458, 2009.
[2.121] Savriama, Y. and Klingenberg, C.P., Beyond bilateral symmetry: Geometric morphometric methods for any type of symmetry. BMC Evol. Biol., 11, 280, 2011.
[2.122] Schmid, A.-M.M., Morphogenetic forces in diatom cell wall formation, in: Cytomechanics: The Mechanical Basis of Cell Form and Structure, J. Bereiter-Hahn, O.R. Anderson, W.E. Reif (Eds.), pp. 183–199, Springer-Verlag, Berlin, 1987.
[2.123] Schmid, A.-M.M., Aspects of morphogenesis and function of diatom cell walls with implications for taxonomy. Protoplasma, 181, 1–4, 43–60, 1994.
[2.124] Schmid, A.-M.M., The wall & membrane systems in diatoms: Comment in reply to Medlin (2004). Diatom Res., 20, 1, 211–216, 2005.
[2.125] Schmid, A.-M.M. and Crawford, R.M., Ellerbeckia arenaria (Bacillariophyceae): Formation of auxospores and initial cells. Eur. J. Phycol.,