Группа авторов

Superatoms


Скачать книгу

of cluster ions. Chem. Rev. 100: 3963–3998.

      73 73 Bieske, E.J. and Maier, J.P. (1993). Spectroscopic studies of ionic complexes and clusters. Chem. Rev. 93: 2603–2621.

      74 74 Celii, F.G. and Janda, K.C. (1986). Vibrational spectroscopy, photochemistry, and photophysics of molecular clusters. Chem. Rev. 86: 507–520.

      75 75 Neusser, H.J. and Siglow, K. (2000). High‐resolution ultraviolet spectroscopy of neutral and ionic clusters: hydrogen bonding and the external heavy atom effect. Chem. Rev. 100: 3921–3942.

      76 76 Alonso, J.A. (2000). Electronic and atomic structure, and magnetism of transition‐metal clusters. Chem. Rev. 100: 637–678.

      77 77 Boldyrev, A.I. and Wang, L.‐S. (2001). Beyond classical stoichiometry: experiment and theory. J. Phys. Chem. A 105: 10759–10775.

      78 78 Gabriel, J.‐C.P., Boubekeur, K., Uriel, S., and Batail, P. (2001). Chemistry of hexanuclear rhenium chalcohalide clusters. Chem. Rev. 101: 2037–2066.

      79 79 Lombardi, J.R. and Davis, B. (2002). Periodic properties of force constants of small transition‐metal and lanthanide clusters. Chem. Rev. 102: 2431–2460.

      80 80 Lee, S.C. and Holm, R.H. (2004). The clusters of nitrogenase: synthetic methodology in the construction of weak‐field clusters. Chem. Rev. 104: 1135–1158.

      81 81 Dermota, T.E., Zhong, Q., and Castleman, A.W. (2004). Ultrafast dynamics in cluster systems. Chem. Rev. 104: 1861–1886.

      82 82 Chisholm, M.H. and Macintosh, A.M. (2005). Linking multiple bonds between metal atoms: clusters, dimers of “dimers”, and higher ordered assemblies. Chem. Rev. 105: 2949–2976.

      83 83 Sevov, S.C. and Goicoechea, J.M. (2006). Chemistry of deltahedral Zintl ions. Organometallics 25: 5678–5692.

      84 84 Ferrando, R., Jellinek, J., and Johnston, R.L. (2008). Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chem. Rev. 108: 845–910.

      85 85 Erdemir, D., Lee, A.Y., and Myerson, A.S. (2009). Nucleation of crystals from solution: classical and two‐step models. Acc. Chem. Res. 42: 621–629.

      86 86 Schnöckel, H. (2010). Structures and properties of metalloid Al and Ga clusters open our eyes to the diversity and complexity of fundamental chemical and physical processes during formation and dissolution of metals. Chem. Rev. 110: 4125–4163.

      87 87 Qiu, J. and Burns, P.C. (2013). Clusters of actinides with oxide, peroxide, or hydroxide bridges. Chem. Rev. 113: 1097–1120.

      88 88 Yano, J. and Yachandra, V. (2014). Mn4Ca cluster in photosynthesis: where and how water is oxidized to dioxygen. Chem. Rev. 114: 4175–4205.

      89 89 Cruz‐Olvera, D., de la Trinidad Vasquez, A., Geudtner, G. et al. (2015). Transition‐state searches in metal clusters by first‐principle methods. J. Phys. Chem. A 119: 1494–1501.

      90 90 Fernando, A., Weerawardene, K.L.D.M., Karimova, N.V., and Aikens, C.M. (2015). Quantum mechanical studies of large metal, metal oxide, and metal chalcogenide nanoparticles and clusters. Chem. Rev. 115: 6112–6216.

      91 91 Tomalia, D.A. and Khanna, S.N. (2016). A systematic framework and nanoperiodic concept for unifying nanoscience: hard/soft nanoelements, superatoms, meta‐atoms, new emerging properties, periodic property patterns, and predictive mendeleev‐like nanoperiodic tables. Chem. Rev. 116: 2705–2774.

      92 92 Gillespie, R.J. (1979). Nyholm memorial lecture. Ring, cage, and cluster compounds of the main group elements. Chem. Soc. Rev. 8: 315–352.

      93 93 Holm, R.H. (1981). Centenary lecture. Metal clusters in biology: quest for a synthetic representation of the catalytic site of nitrogenase. Chem. Soc. Rev. 10: 455–490.

      94 94 Greenwood, N.N. (1984). Liversidge lecture. Molecular tectonics: the construction of polyhedral clusters. Chem. Soc. Rev. 13: 353–374.

      95 95 Mingos, D.M.P. (1986). Bonding in molecular clusters and their relationship to bulk metals. Chem. Soc. Rev. 15: 31–61.

      96 96 Coolbaugh, M.T. and Garvey, J.F. (1992). Magic numbers in molecular clusters: a probe for chemical reactivity. Chem. Soc. Rev. 21: 163–169.

      97 97 Imhof, D. and Venazi, L.M. (1994). Trimetallic units as building blocks in cluster chemistry. Chem. Soc. Rev. 23: 185–193.

      98 98 Housecroft, C.E. (1995). Denuding the boron atom of B‐H interactions in transition metal‐boron clusters. Chem. Soc. Rev. 24: 215–222.

      99 99 Gatteschi, D., Caneschi, A., Sessoli, R., and Cornia, A. (1996). Magnetism of large iron‐oxo clusters. Chem. Soc. Rev. 25: 101–109.

      100 100 Schnepf, A. (2007). Metalloid group 14 cluster compounds: an introduction and perspectives to this novel group of cluster compounds. Chem. Soc. Rev. 36: 745–758.

      101 101 Hakkinen, H. (2008). Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts. Chem. Soc. Rev. 37: 1847–1859.

      102 102 Schmid, G. (2008). The relevance of shape and size of Au55 clusters. Chem. Soc. Rev. 37: 1909–1930.

      103 103 Verlet, J.R.R. (2008). Femtosecond spectroscopy of cluster anions: insights into condensed‐phase phenomena from the gas‐phase. Chem. Soc. Rev. 37: 505–517.

      104 104 Fischer, I. (2003). Time‐resolved photoionization of radicals, clusters and biomolecules: relevant model systems. Chem. Soc. Rev. 32: 59–69.

      105 105 Kostakis, G.E., Ako, A.M., and Powell, A.K. (2010). Structural motifs and topological representation of Mn coordination clusters. Chem. Soc. Rev. 39: 2238–2271.

      106 106 Schubert, U. (2011). Cluster‐based inorganic‐organic hybrid materials. Chem. Soc. Rev. 40: 575–582.

      107 107 Long, D.‐L., Burkholder, E., and Cronin, L. (2007). Polyoxometalate clusters, nanostructures and materials: from self‐assembly to designer materials and devices. Chem. Soc. Rev. 36: 105–121.

      108 108 Rozes, L. and Sanchez, C. (2011). Titanium oxo‐clusters: precursors for a Lego‐like construction of nanostructured hybrid materials. Chem. Soc. Rev. 40: 1006–1030.

      109 109 Cabeza, J.A. and Garcia‐Alvarez, P. (2011). The N‐heterocyclic carbene chemistry of transition‐metal carbonyl clusters. Chem. Soc. Rev. 40: 5389–5405.

      110 110 Sculfort, S. and Braunstein, P. (2011). Intramolecular d10‐d10 interactions in heterometallic clusters of the transition metals. Chem. Soc. Rev. 40: 2741–2760.

      111 111 Lu, Z. and Yin, Y. (2012). Colloidal nanoparticle clusters: functional materials by design. Chem. Soc. Rev. 41: 6874–6887.

      112 112 Lu, Y. and Chen, W. (2012). Sub‐nanometre sized metal clusters: from synthetic challenges to the unique property discoveries. Chem. Soc. Rev. 41: 3594–3623.

      113 113 Olid, D., Nunez, R., Vinas, C., and Teixidor, F. (2013). Methods to produce B‐C, B‐P, B‐N and B‐S bonds in boron clusters. Chem. Soc. Rev. 42: 3318–3336.

      114 114 Fuhr, O., Dehnen, S., and Fenske, D. (2013). Chalcogenide clusters of copper and silver from silylated chalcogenide sources. Chem. Soc. Rev. 42: 1871–1906.

      115 115 Sterenberg, B.T., Scoles, L., and Carty, A.J. (2002). Synthesis, structure, bonding and reactivity in clusters of the lower phosphorus oxides. Coord. Chem. Rev. 231: 183–197.

      116 116 LaViolette, R.A. and Benson, M.T. (2012). Structure and thermodynamics of phosphorus oxide caged clusters. J. Struct. Chem. 53: 48–54.

      117 117 Sokolov, M.N. and Fedin, V.P. (2004). Chalcogenide clusters of vanadium, niobium and tantalum. Coord. Chem. Rev. 248: 925–944.

      118 118 Thompson, L.K., Waldmann, O., and Xu, Z. (2005). Polynuclear manganese grids and clusters—a magnetic perspective. Coord. Chem. Rev. 249: 2677–2690.

      119 119 Alexandrova, A.N., Boldyrev, A.I., Zhai, H.‐J., and Wang, L.‐S. (2006). Allboron aromatic clusters as potential new inorganic ligands and building blocks in chemistry. Coord. Chem. Rev. 250: 2811–2866.

      120 120