Группа авторов

Superatoms


Скачать книгу

Chem. Rev. 250: 1294–1314.

      121 121 Huang, Y.‐G., Jiang, F.‐L., and Hong, M.‐C. (2009). Magnetic lanthanide−transition‐metal organic−inorganic hybrid materials: from discrete clusters to extended frameworks. Coord. Chem. Rev. 253: 2814–2834.

      122 122 Llusar, R. and Vicent, C. (2010). Trinuclear molybdenum cluster sulfides coordinated to dithiolene ligands and their use in the development of molecular conductors. Coord. Chem. Rev. 254: 1534–1548.

      123 123 Glover, S.D., Goeltz, J.C., Lear, B.J., and Kubiak, C.P. (2010). Inter‐ or intramolecular electron transfer between triruthenium clusters: we’ll cross that bridge when we come to it. Coord. Chem. Rev. 254: 331–345.

      124 124 Shieh, M., Miu, C.‐Y., Chu, Y.‐Y., and Lin, C.‐N. (2012). Recent progress in the chemistry of anionic groups 6−8 carbonyl chalcogenide clusters. Coord. Chem. Rev. 256: 637–694.

      125 125 Kostakis, G.E., Perlepes, S.P., Blatov, V.A. et al. (2012). High‐nuclearity cobalt coordination clusters: synthetic, topological and magnetic aspects. Coord. Chem. Rev. 256: 1246–1278.

      126 126 Mayasree, O., Sankar, C.R., Kleinke, K.M., and Kleinke, H. (2012). Cu clusters and chalcogenchalcogen bonds in various copper polychalcogenides. Coord. Chem. Rev. 256: 1377–1383.

      127 127 Sokolov, M.N. and Abramov, P.A. (2012). Chalcogenide clusters of Groups 8−10 noble metals. Coord. Chem. Rev. 256: 1972–1991.

      128 128 Hong, K. and Chun, H. (2013). Nonporous titanium−oxo molecular clusters that reversibly and selectively adsorb carbon dioxide. Inorg. Chem. 52: 9705–9707.

      129 129 Brack, M. (1993). The physics of simple metal clusters: self‐consistent jellium model and semiclassical approaches. Rev. Mod. Phys. 65: 677–732.

      130 130 de Heer, W.A. (1993). The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys. 65: 611–676.

      131 131 Jensen, P. (1999). Growth of nanostructures by cluster deposition: Experiments and simple models. Rev. Mod. Phys. 71: 1695–1735.

      132 132 Herschbach, D. (1999). Chemical physics: molecular clouds, clusters, and corrals. Rev. Mod. Phys. 71: S411–S418.

      133 133 Maier, T., Jarrell, M., Pruschke, T., and Hettler, M.H. (2005). Quantum cluster theories. Rev. Mod. Phys. 77: 1027–1080.

      134 134 Fennel, T., Meiwes‐Broer, K.H., Tiggesbäumker, J. et al. (2010). Laser‐driven nonlinear cluster dynamics. Rev. Mod. Phys. 82: 1793–1842.

      135 135 Einax, M., Dieterich, W., and Maass, P. (2013). Colloquium: cluster growth on surfaces: densities, size distributions, and morphologies. Rev. Mod. Phys. 85: 921–939.

      136 136 Furrer, A. and Waldmann, O. (2013). Magnetic cluster excitations. Rev. Mod. Phys. 85: 367–420.

      137 137 Khanna, S.N. and Jena, P. (1992). Assembling crystals from clusters. Phys. Rev. Lett. 69: 1664–1667.

      138 138 Khanna, S.N. and Jena, P. (1995). Atomic clusters: building blocks for a class of solids. Phys. Rev. B 51: 13705–13716.

      139 139 Knight, W.D., Clemenger, K., de Heer, W.A. et al. (1984). Electronic shell structure and abundances of sodium clusters. Phys. Rev. Lett. 52: 2141–2144.

      140 140 Jena, P. (2013). Beyond the periodic table of elements: the role of superatoms. J. Phys. Chem. Lett. 4: 1432.

      141 141 Leuchtner, R.E., Harms, A.C., and Castleman, A.W. Jr. (1989). Thermal metal cluster anion reactions: behavior of aluminum clusters with oxygen. J. Chem. Phys. 91: 2753.

      142 142 Li, X., Wu, H., Wang, X.B., and Wang, L.S. (1998). s−p Hybridization and electron shell structures in aluminum clusters: a photoelectron spectroscopic study. Phys. Rev. Lett. 81: 1909–1912.

      143 143 Rao, B.K. and Jena, P. (1999). Evolution of the electronic structure and properties of neutral and charged aluminum clusters: a comprehensive analysis. J. Chem. Phys. 111: 1890.

      144 144 Khanna, S.N. and Jena, P. (1994). Designing ionic solids from metallic clusters. Chem. Phys. Lett. 219: 479–483.

      145 145 Zheng, W.‐J., Thomas, O.C., Lippa, T.P. et al. (2006). The ionic KAl13 molecule: a stepping stone to cluster assembled materials. J. Chem. Phys. 124: 144304–144305.

      146 146 Gutsev, G.L. and Boldyrev, A.I. (1981). DVM‐Xα calculations on the ionization potentials of MXk+1−complex anions and the electron affinities of MXk+1 “superhalogens”. Chem. Phys. 56: 277–283.

      147 147 Jena, P. and Sun, Q. (2018). Super atomic clusters: design rules and potential for building blocks of materials. Chem. Rev. 118: 5755–5870.

      148 148 Saito, S. and Ohnishi, S. (1987). Stable (Na19)2 as a giant alkali‐metal‐ atom dimer. Phys. Rev. Lett. 59: 190–193.

      149 149 Hakkinen, H. and Manninen, M. (1996). How “magic” is a magic cluster? Phys. Rev. Lett. 76: 1599–1602.

      150 150 Bergeron, D.E., Castleman, A.W. Jr., Morisato, T., and Khanna, S.N. (2004). Formation of Al13I−: evidence for the superhalogen character of Al13. Science 304: 84–87.

      151 151 Kumar, V. and Kawazoe, Y. (2003). Metal‐doped magic clusters of Si, Ge, and Sn: The finding of a magnetic superatom. Appl. Phys. Lett. 83: 2677.

      152 152 Rao, B.K., Jena, P., and Manninen, M. (1985). Relationship between topological and magnetic order in small metal clusters. Phys. Rev. B 32: 477.

      153 153 Nayak, S.K. and Jena, P. (1998). Anomalous magnetism of small Mn clusters. Chem. Phys. Lett. 289: 473.

       Puru Jena1, Hong Fang1, and Qiang Sun2,3

       1 Physics Department, Virginia Commonwealth University, Richmond, Virginia, USA

       2 School of Materials Science and Engineering, Peking University, Beijing, China

       3 Center for Applied Physics and Technology, Peking University, Beijing, China