Группа авторов

Alternative Liquid Dielectrics for High Voltage Transformer Insulation Systems


Скачать книгу

ratio is compared in the order of R1, R2, R3, R4 and the fault type is ascertained as given in Table 2.8.

Gas ratio Value Code
R2 = C2H2/C2H4 R2 < 0.1 0
0.1≤ R2 ≤ 3 1
R2 > 3 2
R1 = CH4/H2 R1 < 0.1 1
0.1≤ R1 ≤ 1 0
R1 > 1 2
R5 = C2H4/C2H6 R5 < 1 0
1≤ R5 ≤ 3 1
R5 > 3 2
No. Type of fault Code
R2 R1 R5
1 No fault 0 0 0
2 Partial Discharge with low energy density 0 1 0
3 Partial Discharge with high energy density 1 1 0
4 Discharge (arc) with low energy 1→2 0 1→2
5 Discharge (arc) with high energy 1 0 2
6 Thermal faults of temperatures < 150 °C 0 0 1
7 Thermal faults of temperatures between 150 and 300 °C 0 2 0
8 Thermal faults of temperatures between 300 and 700 °C 0 2 1
9 Thermal faults of temperatures >700 °C 0 2 2
Key gases Minimum concentration L1 (ppm)
Hydrogen (H2) 100
Methane (CH4) 120
Carbon monoxide (CO) 350
Acetylene (C2H2) 1
Ethylene (C2H4) 50
Ethane (C2H6) 65
No. Type of fault R1 R2 R3 R4
1 No fault Conc. (H2 or CH4 or C2H2 or C2H4)>2L1 and Conc. (C2H6 and CO) <L1] or [Conc. (H2 or CH4 or C2H2 or C2H4)< 2L1]
2 Thermal decomposition R1 > 1 R2 < 0.75 R3 < 0.3 R4 > 0.4
3 Low‐intensity partial discharge R1 < 0.1 R2 = ND R3 < 0.3 R4 > 0.4
4 High‐intensity arcing 0.1 < R1 < 1 R2 > 0.75 R3 > 0.3 R4 < 0.4

      2.6.1.3 Rogers Ratio Method

      2.6.1.4 Duval’s Triangle