C. Anandharamakrishnan

3D Printing of Foods


Скачать книгу

href="https://doi.org/10.1016/j.foodchem.2019.02.090">https://doi.org/10.1016/j.foodchem.2019.02.090.

      95 Pérez‐Luna, V.H. and González‐Reynoso, O. (2018). Encapsulation of biological agents in hydrogels for therapeutic applications. Gels 4 (3): 61.

      96 Periard, D., Schaal, N., Schaal, M. et al. (2007). Printing food. Proceedings of the 18th Solid Freeform Fabrication Symposium, pp. 564–574.

      97 Portanguen, S., Tournayre, P., Sicard, J. et al. (2019). Toward the design of functional foods and biobased products by 3D printing: a review. Trends in Food Science & Technology 86: 188–198.

      98 Post, M.J., Levenberg, S., Kaplan, D.L. et al. (2020). Scientific, sustainability and regulatory challenges of cultured meat. Nature Food 1 (7): 403–415.

      99 Pradhan, R.A., Rahman, S.S., Qureshi, A., and Ullah, A. (2021). Biopolymers: opportunities and challenges for 3D printing. Biopolymers and Their Industrial Applications, pp. 281–303.

      100 Prasad, L.K. and Smyth, H. (2016). 3D Printing technologies for drug delivery: a review. Drug Development and Industrial Pharmacy 42 (7): 1019–1031.

      101 Rando, P. and Ramaioli, M. (2020). Food 3D printing: effect of heat transfer on print stability of chocolate. Journal of Food Engineering 294: 110415.

      102 Sanz‐Garcia, A., Sodupe‐Ortega, E., Shimizu, T. et al. (2020). A versatile open‐source printhead for low‐cost 3D microextrusion‐based bioprinting. Polymers 12 (10): 2346.

      103 Schmid, M., Amado, F., Levy, G. et al. (2013). Flowability of powders for selective laser sintering (SLS) investigated by round robin test. High Value Manufacturing: Advanced Research in Virtual and Rapid Prototyping: Proceedings of the 6th International Conference on Advanced Research in Virtual and Rapid Prototyping, p. 95.

      104 Serizawa, R., Shitara, M., Gong, J. et al. (2014). 3D jet printer of edible gels for food creation. Behavior and Mechanics of Multifunctional Materials and Composites 2014 (9058): 90580A.

      105 Severini, C., Derossi, A., and Azzollini, D. (2016). Variables affecting the printability of foods: preliminary tests on cereal‐based products. Innovative Food Science and Emerging Technologies 38: 281–291. https://doi.org/10.1016/j.ifset.2016.10.001.

      106 Severini, C., Azzollini, D., Albenzio, M., and Derossi, A. (2018). On printability, quality and nutritional properties of 3D printed cereal based snacks enriched with edible insects. Food Research International 106 (November 2017): 666–676. https://doi.org/10.1016/j.foodres.2018.01.034.

      107 Shahrubudin, N., Lee, T.C., and Ramlan, R. (2019). An overview on 3D printing technology: technological, materials, and applications. Procedia Manufacturing 35: 1286–1296. https://doi.org/10.1016/j.promfg.2019.06.089.

      108 Shastry, A.V., Collins, T.M., Suttle, J.M. et al. (2009). Edible inks for ink‐jet printing on edible substrates. Google Patents.

      109 Shirazi, S.F.S., Gharehkhani, S., Mehrali, M. et al. (2015). A review on powder‐based additive manufacturing for tissue engineering: selective laser sintering and inkjet 3D printing. Science and Technology of Advanced Materials 16 (3).

      110 Shree, M.V., Dhinakaran, V., Rajkumar, V. et al. (2020). Effect of 3D printing on supply chain management. Materials Today: Proceedings 21: 958–963.

      111 Southerland, D., Walters, P., and Huson, D. (2011). Edible 3D printing. NIP & Digital Fabrication Conference 2011 (2): 819–822.

      112 Sun, J., Peng, Z., Zhou, W. et al. (2015). A review on 3D printing for customized food fabrication. Procedia Manufacturing 1: 308–319.

      113 Sun, J., Zhou, W., Huang, D., and Yan, L. (2018a). 3D food printing: perspectives. In: Polymers for Food Applications (ed. T.J. Gutierrez), pp. 725–755. Springer.

      114 Sun, J., Zhou, W., Yan, L. et al. (2018b). Extrusion‐based food printing for digitalized food design and nutrition control. Journal of Food Engineering 220: 1–11. https://doi.org/10.1016/j.jfoodeng.2017.02.028.

      115 Theagarajan, R., Moses, J.A., and Anandharamakrishnan, C. (2020). 3D extrusion printability of rice starch and optimization of process variables. Food and Bioprocess Technology 13: 1048. https://doi.org/10.1007/s11947‐020‐02453‐6.

      116 Tomiyama, A.J., Kawecki, N.S., Rosenfeld, D.L. et al. (2020). Bridging the gap between the science of cultured meat and public perceptions. Trends in Food Science & Technology 104: 144–152.

      117 Trenfield, S.J., Madla, C.M., Basit, A.W., and Gaisford, S. (2018). Binder jet printing in pharmaceutical manufacturing. In: 3D Printing of Pharmaceuticals, AAPS Advances in the Pharmaceutical Sciences Series, vol. 31 (eds. A.W. Basit and S. Gaisford), 41–54. Springer https://doi.org/10.1007/978‐3‐319‐90755‐0_3.

      118 Uribe‐Wandurraga, Z.N., Zhang, L., Noort, M.W.J. et al. (2020). Printability and physicochemical properties of microalgae‐enriched 3D‐printed snacks. Food and Bioprocess Technology 13 (11): 2029–2042.

      119 Van der Linden, D. (2015). 3D food printing. TNO. https://www.tno.nl/media/2217/3d_food_printing.pdf (accessed 19 October 2019).

      120 Van Wijk, A.J.M. and Van Wijk, I. (2015). 3D Printing with Biomaterials: Towards a Sustainable and Circular Economy. IOS press.

      121 Vithani, K., Goyanes, A., Jannin, V. et al. (2019). An overview of 3D printing technologies for soft materials and potential opportunities for lipid‐based drug delivery systems. Pharmaceutical Research 36 (1): 4.

      122 Von, H.K.W., Von, H.E.M., Williams, D.X., et al. (2015a). Method for producing a three‐dimensional food product. Google Patents.

      123 Von, H.K.W., Von, H.E. M., Williams, D.X., et al. (2015b). Procede de production d’un produit alimentaire en trois dimensions. Google Patents.

      124 Wang, L., Zhang, M., Bhandari, B., and Yang, C. (2018). Investigation on fish surimi gel as promising food material for 3D printing. Journal of Food Engineering 220: 101–108. https://doi.org/10.1016/j.jfoodeng.2017.02.029.

      125 Wegrzyn, T.F., Golding, M., and Archer, R.H. (2012). Food layered manufacture: a new process for constructing solid foods. Trends in Food Science & Technology 27 (2): 66–72.

      126 Willcocks, N.A., Shastry, A., Collins, T.M. et al. (2011). High resolution ink‐jet printing on edibles and products made. Google Patents.

      127 Willcocks, N.A., Shastry, A.V., Collins, T. M. et al. (2016). Edibles comprising a high resolution image. Google Patents.

      128 Wilson, A., Anukiruthika, T., Moses, J.A., and Anandharamakrishnan, C. (2020). Customized shapes for chicken meat–based products: feasibility study on 3d‐printed nuggets. Food and Bioprocess Technology 13: 1–16.

      129 Xaar (2018). A guide to industrial inkjet. https://www.xaar.com/media/1830/xaar‐inkjet‐guide‐eng.pdf (accessed 23 December 2020).

      130 Xu, X., Awad, A., Martinez, P.R. et al. (2020). Vat photopolymerization 3D printing for advanced drug delivery and medical device applications. Journal of Controlled Release 329: 743–757. https://doi.org/10.1016/j.jconrel.2020.10.008.

      131 Yang, F., Zhang, M., and Bhandari, B. (2017). Recent development in 3D food printing. Critical Reviews in Food Science and Nutrition 57 (14): 3145–3153.

      132 Yang, F., Zhang, M., Fang, Z., and Liu, Y. (2019a). Impact of processing parameters and post‐treatment on the shape accuracy of 3D‐printed