NITIN KUMAR

Thermal Food Engineering Operations


Скачать книгу

      1

      Novel Thermal Technologies: Trends and Prospects

       Amrita Preetam1*, Vipasha1, Sushree Titikshya1, Vivek Kumar1, K.K. Pant2 and S. N. Naik1

       1Centre for Rural Development and Technology, IIT Delhi, Delhi, India

       2Department of Chemical Engineering, IIT Delhi, Delhi, India

       Abstract

      Heating is possibly the most traditional way of processing foods. The technologies involved in heating have been continuously developing for the past many years as per consumer need, satisfaction and demand. Techniques such as dielectric heating, ohmic heating, and infrared heating are evolving and can substitute for the conventional heating methods for improving quality and shelf life, and providing a faster production rate. The conventional technologies are primarily based on convective, conductive, and radiative heat transfer. But the new novel thermal methods are mainly relying on the electromagnetic field or electrical conductivity and are having cleaner environmental impacts such as energy saving, water savings, improved efficiencies, fewer emissions, and eventually decreasing dependency on non-renewable resources. The chapter discusses novel thermal technologies. Definitions, basic principles, environmental impacts, current trends, and future perspectives are described along with the mechanism and advantages of the novel thermal technologies. The novel thermal technologies are continuously emerging and evolving as per consumer requirements and need.

      Keywords: Novel thermal technologies, infrared heating, ohmic heating, microwave heating, radiofrequency heating

      Therefore research has been made for raising the quality and safety and economic aspects of food through technological development. The novel thermal technologies in which the main processing factor is temperature change as the main parameter responsible for food processing can be considered as the promising alternative in food processing as compared to the traditional process. Unlike traditional technologies, novel thermal technologies are based on electromagnet field (EMI) or electric conductivity. Novel thermal technologies are based on the heat generations directly inside the food. The novel thermal technologies have successfully helped in enhancing the effectiveness of heat processing along with ensuring food safety and maintaining nutritional food properties. Infrared heating has also evolved for the processing of food. The thermal technologies involve the equipment plotted to heat the food to process it, whereas in non-thermal techniques the food is virtually processed without the involvement of food. The general definition of common technologies involved in novel thermal techniques and their basic differences are discussed below.

      Ohmic heating is also called Joule heating, electrical residence heating. It is a method of heating the food by the passage of an electric current, so heat is generated due to the electrical current. It is a direct method, as the heat energy is directly dissipated into the food. It is primarily used to preserve food. Electric energy is dissipated into heat, which results in quick and uniform heating followed by maintaining the nutritional value and color. The key variable in electrical conductivity is designing of an effective ohmic meter. Ohmic heating uses a normal electrical supply frequency which is of 50-60Hz. Ohmic heating instantly penetrates directly into the food. The applications of ohmic heating include UHT sterilization, pasteurization, and others.

      Infrared heating is mainly utilized to modify the eating characteristics of food by varying its color, texture, flavor, and odor. Radiant heat is less managed and has a broader range of frequencies. The thermal conductivity is a limiting factor in infrared heating. It acts as an indirect method of heating. Infrared is simply absorbed and converted into heat. It has limited penetration depth in food. It has several advantages over conventional methods such as decreased heating time, reduce quality loss, and uniform heating, versatility, easy to operate and compact equipment, and many others. It also has a vast area of application includes drying, frying, baking, cooking, freeze-drying, pasteurization, sterilization, blanching, and many others.

      The other technique is non-thermal heating technologies which are based on pulsed light, pulsed electric fields, ultrasound, and gamma radiation, and others, where the temperature may change also but is not the prime parameter for food processing. The purpose of this chapter is to deliver a general outlook of novel thermal technologies in the food processing sector along with their environmental impact, current trends, and future perspective.

      The most common approach for food processing in the last 50 years is thermal processing because a huge amount of microorganisms are removed at elevated temperatures by killing them. Thermal processing protects food by pasteurization, hot air drying, and others, induces variations to improve food quality by baking, blanching, roasting, frying, and cooking. Time and temperature used are the key variable depending on the application used. In the case of thermal processing, sometimes the high temperature may lead to loss of nutrients or bioactive compounds which results in low-processed food and low-grade food.