закона нарушают либо сознательно, либо не совсем адекватные люди. А нарушение закона достаточного основания не всегда осознаётся.
Формальная логика – это аналитический, дедуктивный метод познания, этим он схож с алгеброй с той лишь разницей, что в алгебре буквами обозначается какое-либо количество, а в логике – какое-либо высказывание. Символическое выражение высказываний и правил выводов позволяет привлечь в формальную логику математические методы. Они упрощают решение задач, когда при усложнении условий человеку бывает трудно удержать в уме все данные. Например, есть детская задачка про то, как перевезти через реку козу, капусту и волка. Если её записать в виде формул символической логики, то решение становится очевидным. Если А – коза, В – волк, С – капуста, то запись условий задачи будет такой: коза или волк – АVB, коза или капуста – АVC, волк и капуста – ВɅC. Ясно: вместе могут быть только волк и капуста (ВɅC), значит, надо перевозить так, чтобы вместе оказывались только они.
Методы математической логики можно использовать в юридической практике со многими участниками происшествий; в дипломатии, когда каждый шаг имеет разные последствия для отношений с разными странами; в логистике с множеством вариантов транспортировки товаров, – везде, где логические формулы облегчают обработку информации.
Формальная логика позволила более-менее однозначно выражать мысли и понимать друг друга. Но обнаружились и недостатки, с которыми столкнулись люди при использовании формально-логических правил, – это появление в процессе рассуждений противоречий. Они требовали создания механизма их преодоления.
1.2. Устранение формально-логических противоречий
В ХХ веке формальная логика усложнилась, появились: математическая, вероятностная и другие неклассические логики. Для определённых целей стали создаваться специальные логики со своим набором аксиом. Внутри самих таких логических систем возникающие противоречия тоже считаются ошибкой.
Наиболее последовательно характер формальной логики выражен в математике. Сложение и вычитание, умножение и деление – нигде мы не видим нарушение её законов.
Но оказалось, что и в математике есть проблемы с непротиворечивостью.
Например, имеем два неравных числа a и b. Находим их разность:
a – b = c.
Умножаем обе части уравнения на (a – b). Получаем:
a² – ab – ab + b² = ac – bc.
Переносим:
a² – ab – ac = ab – b² – bc.
Выносим за скобки:
a (a – b – c) = b (a – b – c).
Сокращаем на (a – b – c).
В результате получаем: a = b.
Как видим, нарушения правил нет, а вывод противоречит условию.
Мало того, как доказал математик Курт Гёдель (1906—1978), непротиворечивых логических систем невозможно создать в принципе. Поэтому все логические системы содержат в качестве аксиом те или иные запреты. В нашем случае