в статическом виде. Также в данном случае использовано преобразование лапласиана относительно оператора Набла и градиента, как это было использовано ранее в случае теплопроводности. Следующей стадией является определение электроёмкости (6) и приведение аналогичного выражения для суммы электроёмкости и электропроводности (7).
Таким образом было сформулировано дифференциальное уравнение в частных производных, описывающее явление электропроводности, которое может быть преобразован в последующем. Для явлений электромагнитного поля используется уравнение Пуассона для электростатического поля (8), которое будет оказывать влияние на уравнение (7) и поскольку каждый из функций описывает явление в векторном пространстве со своими единичными элементами, то по определению функционального анализа относительно них может быть использован метод векторного сложения (9), что также лишний раз подтверждается участием оператора Набла в (7) таким образом выведя результирующий вид функции относительно заданного явления, при чём каждый из функций в (9) является решением динамических дифференциальных уравнений в частных производных (7) и (8), соответственно.
При том, что в (8) под углом понимается взаимный угол взаимодействия между функциями-векторами. Для решения представленного уравнения необходимо использование метода Фурье разделения переменных для каждого из избранных случаев, что может быть представлено в расширенном виде, с учётом использования отдельно взятых функций. В реальном представлении указанное уравнение может быть использовано относительно описания электрического перехода в полупроводниковом элементе, построенный согласно слоям CdTe-SiO2-Si, в данном случае между теллуридом кадмия и кремнием будут находиться источники тока, куда направлено напряжение порядка 100—200 В. Также, имеется внешний источник поля, приближённый к слою CdTe, разделённый с слоем кремния посредством оксидной плёнки. Известны размерности каждого из слоёв (Табл. 1).
Таблица 1. Размерности слоёв полупроводникового элемента
В последующем необходимо обратить внимание на каждый из элементов слоя по отдельности для выведения соответствующих функций.
1. Теллурид кадмия
Первоначально для понимания типа полупроводника теллурида кадмия необходимо составление картины электронных оболочек каждого из элементов (10).
Из полученной картины наглядно видно, что кадмий, используемый в соединении, имеется 2 электрона на внешней оболочке, однако на внешней оболочке теллура, которым он легируется имеется 4 электрона, к тому же до заполнения внешней орбиты теллура не хватает 2 электронов относительно p-орбитали, благодаря чему всё соединение имеет 2 внешних электрона. В силу этого, в соединении имеется большое количество свободных электронов, общее число которых может быть вычислено через (11), в том числе в силу вычисляемого заряда.