для торговли.
– Интерпретация: Фокусируйтесь на сильных корреляциях ( |r| > 0.7 ) для парного трейдинга и хеджирования, на низких ( |r| < 0.3 ) для диверсификации.
Ограничения корреляционных матриц
– Линейная зависимость: Матрицы на основе Пирсона не учитывают нелинейные связи. Для них используйте корреляцию Спирмена (доступна в Python).
– Временная нестабильность: Корреляции могут меняться из-за новостей или рыночных событий. Например, корреляция Bitcoin и S&P 500 может упасть с ( r = 0.75 ) до ( r = 0.3 ) после регуляторных новостей.
– Выбросы: Экстремальные движения цен искажают корреляции. Используйте робастные методы, такие как медианная фильтрация, в Python.
– Ограниченный объём активов: слишком большая матрица (более 10 активов) усложняет анализ. Ограничивайтесь 4–8 активами.
Практическое задание: построение корреляционной матрицы
1. Выберите 5 активов: EUR/USD, GBP/USD, USD/JPY (форекс), S&P 500 (фондовый рынок), Bitcoin (крипто).
2. Соберите данные за 30 дней (Yahoo Finance, TradingView или MetaTrader).
3. Постройте корреляционную матрицу:
Конец ознакомительного фрагмента.
Текст предоставлен ООО «Литрес».
Прочитайте эту книгу целиком, купив полную легальную версию на Литрес.
Безопасно оплатить книгу можно банковской картой Visa, MasterCard, Maestro, со счета мобильного телефона, с платежного терминала, в салоне МТС или Связной, через PayPal, WebMoney, Яндекс.Деньги, QIWI Кошелек, бонусными картами или другим удобным Вам способом.