Группа авторов

Nanobiotechnology in Diagnosis, Drug Delivery and Treatment


Скачать книгу

5 (3): 124–134.

      17 Blume, G. and Ceve, G. (1990). Liposomes for the sustained drug release in vivo. Biochimica et Biophysica Acta 1029 (1): 91–97.

      18 Bonnard, T., Gauberti, M., de Lizarrondo, S.M. et al. (2019). Recent advances in nanomedicine for ischemic and hemorrhagic stroke. Stroke 50: 1318–1324.

      19 Chandra, A., Joshi, K., and Aggarwal, G. (2018). Topical nano drug delivery for treatment of psoriasis: progressive and novel delivery. Asian Journal of Pharmaceutics 12 (3): S835–S848.

      20 Chansuvarn, W., Tuntulani, T., and Imyim, A. (2015). Colorimetric detection of mercury(II) based on gold nanoparticles, fluorescent gold nanoclusters and other gold‐based nanomaterials. TrAC Trends in Analytical Chemistry 65: 83–96.

      21 Chen, T.J., Cheng, T.H., Chen, C.Y. et al. (2009). Targeted Herceptin dextraniron oxide nanoparticles for noninvasive imaging of HER2/neu receptors using MRI. Journal of Biological Inorganic Chemistry 14 (2): 253–260.

      22 Chen, Y., Wang, Y., Liu, L. et al. (2015). A gold immunochromatographic assay for the rapid and simultaneous detection of fifteen β‐lactams. Nanoscale 7: 16381–16388.

      23 Cho, K., Wang, X.U., Nie, S., and Shin, D.M. (2008). Therapeutic nanoparticles for drug delivery in cancer. Clinical Cancer Research 14 (5): 1310–1316.

      24 Choudhary, S., Gupta, L., Rani, S. et al. (2017). Impact of dendrimers on solubility of hydrophobic drug molecules. Frontiers in Pharmacology 8: 261. https://doi.org/10.3389/fphar.2017.00261.

      25 Crucho, C.I.C. and Barros, M.T. (2017). Polymeric nanoparticles: a study on the preparation variables and characterization methods. Materials Science and Engineering C 80: 771–784.

      26 Dudefoi, W., Villares, A., Peyron, S. et al. (2018). Nanoscience and nanotechnologies for biobased materials, packaging and food applications: new opportunities and concerns. Innovative Food Science & Emerging Technologies 46: 107–121.

      27 Dykman, L. and Khlebtsov, N. (2012). Gold nanoparticles in biomedical applications: recent advances and perspectives. Chemical Society Reviews 41: 2256–2282.

      28 El‐Hammadi, M.M. and Arias, J.L. (2019). An update on liposomes in drug delivery: a patent review (2014‐2018). Expert Opinion on Therapeutic Patents 29 (11): 891–907.

      29 Gao, X., Cui, Y., Levenson, R.M. et al. (2004). In vivo cancer targeting and imaging with semiconductor quantum dots. Nature Biotechnology 22 (8): 969–976.

      30  Gatoo, M.A., Naseem, S., Arfat, M.Y. et al. (2014). Physicochemical properties of nanomaterials: implication in associated toxic manifestations. BioMed Research International 2014 (498420) https://doi.org/10.1155/2014/498420.

      31 Gholami‐Shabani, M., Akbarzadeh, A., Norouzian, D. et al. (2014). Antimicrobial activity and physical characterization of silver nanoparticles green synthesized using nitrate reductase from Fusarium oxysporum. Applied Biochemistry and Biotechnology 172 (8): 4084–4408.

      32 Gholami‐Shabani, M., Shams‐Ghahfarokhi, M., Gholami‐Shabani, Z. et al. (2015). Enzymatic synthesis of gold nanoparticles using sulfite reductase purified from Escherichia coli: a green eco‐friendly approach. Process Biochemistry 50 (7): 1076–1085.

      33 Gholami‐Shabani, M., Imani, A., Shams‐Ghahfarokhi, M. et al. (2016). Bioinspired synthesis, characterization and antifungal activity of enzyme‐mediated gold nanoparticles using a fungal oxidoreductase. Journal of the Iranian Chemical Society 13 (11): 2059–2068.

      34 Gholami‐Shabani, M., Gholami‐Shabani, Z., Shams‐Ghahfarokhi, M. et al. (2017). Green nanotechnology: biomimetic synthesis of metal nanoparticles using plants and their application in agriculture and forestry. In: Nanotechnology (eds. R. Prasad, M. Kumar and V. Kumar), 133–175. Singapore: Springer.

      35 Gholami‐Shabani, M., Gholami‐Shabani, Z., Shams‐Ghahfarokhi, M., and Razzaghi‐Abyaneh, M. (2018). Application of nanotechnology in mycoremediation: current status and future prospects. In: Fungal Nanobionics: Principles and Applications (eds. R. Prasad, V. Kumar, M. Kumar and S. Wang), 89–116. Singapore: Springer.

      36 Godin, B. and Touitou, E. (2003). Ethosomes: new prospects in transdermal delivery. Critical Review in Therapeutic Drug Carrier Systems 20 (1): 63–102.

      37 Gonzalez‐Rodriguez, R., Campbell, E., and Naumov, A. (2019). Multifunctional graphene oxide/iron oxide nanoparticles for magnetic targeted drug delivery dual magnetic resonance/fluorescence imaging and cancer sensing. PLoS One 14 (6): 0217072. https://doi.org/10.1371/journal.pone.0217072.

      38 Guo, L., Wu, X., Liu, L. et al. (2018). Gold nanoparticle‐based paper sensor for simultaneous detection of 11 benzimidazoles by one monoclonal antibody. Small 14: 1701782. https://doi.org/10.1002/smll.201701782.

      39 Hsu, S.H. and Luo, P.W. (2019). From nanoarchitectonics to tissue architectonics: nanomaterials for tissue engineering. In: Advanced Supramolecular Nanoarchitectonics: Micro and Nano Technologies (eds. K. Ariga and M. Aono), 277–288. UK: Elsevier.

      40 Hua, S., De Matos, M.B., Metselaar, J.M., and Storm, G. (2018). Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Frontiers in Pharmacology 9 (790) https://doi.org/10.3389/fphar.2018.00790.

      41 Huang, X., Qi, X., Boey, F., and Zhang, H. (2012). Graphene‐based composites. Chemical Society Reviews 41: 666–686.

      42 Hyafil, F., Cornily, J.C., Feig, J.E. et al. (2007). Noninvasive detection of macrophages using a nanoparticulate contrast agent for computed tomography. Nature Medicine 13: 636–641.

      43 Inbaraj, B.S. and Chen, B.H. (2016). Nanomaterial‐based sensors for detection of foodborne bacterial pathogens and toxins as well as pork adulteration in meat products. Journal of Food and Drug Analysis 24 (1): 15–28.

      44 Jackson, T.C., Patani, B.O., and Ekpa, D.E. (2017). Nanotechnology in diagnosis: a review. Advances in Nanoparticles 6: 93–102.

      45 Jafari, S., Derakhshankhah, H., Alaei, L. et al. (2019). Mesoporous silica nanoparticles for therapeutic/diagnostic applications. Biomedicine & Pharmacotherapy 109: 1100–1111.

      46 Jain, K.K. (2003). Nanodiagnostics: application of nanotechnology in molecular diagnostics. Expert Review of Molecular Diagnostics 3: 153–161.

      47  Jeong, H.H., Choi, E., Ellis, E., and Lee, T.C. (2019). Recent advances in gold nanoparticles for biomedical applications: from hybrid structures to multi‐functionality. Journal of Materials Chemistry B 7: 3480–3496.

      48 Kaur, R., Sharma, S.K., and Tripathy, S.K. (2019). Advantages and limitations of environmental nanosensors. In: Advances in Nanosensors for Biological and Environmental Analysis (eds. A. Deep and S. Kumar), 119–132. UK: Elsevier.

      49 Kesharwani, P., Gorain, B., Low, S.Y. et al. (2018). Nanotechnology based approaches for anti‐diabetic drugs delivery. Diabetes Research and Clinical Practice 136: 52–77.

      50 Kievit, F.M., Stephen, Z.R., Veiseh, O. et al. (2012). Targeting of primary breast cancers and metastases in a transgenic mouse model using rationally designed multifunctional SPIONs. ACS Nano 6 (3): 2591–2601.

      51 Kim, D., Park, S., Lee, J.H. et al. (2007). Antibiofouling polymer‐coated gold nanoparticles as a contrast agent for in vivo X‐ray computed tomography imaging. Journal of the American Chemical Society 129 (24): 7661–7665.

      52 de Kraker, M.E.A., Stewardson, A.J., and Harbarth, S. (2016). Will 10 million people die a year due to antimicrobial resistance by 2050? PLoS Medicine 13 (11): e1002184. https://doi.org/10.1371/journal.pmed.1002184.

      53 Kulthe, S.S., Choudhari, Y.M., Inamdar, N.N., and Mourya, V. (2012). Polymeric micelles: authoritative