carbon based nanosensors: a promising tool in pharmaceutical and biomedical analysis. Journal of Pharmaceutical and Biomedical Analysis 147: 439–457.
55 Leary, J.F. (2010). Nanotechnology: what is it and why is small so big? Canadian Journal of Ophthalmology 45 (5): 449–456.
56 Lewinski, N., Colvin, V., and Drezek, R. (2008). Cytotoxicity of nanoparticles. Small 4: 26–49.
57 Li, W. and Chen, X. (2015). Gold nanoparticles for photoacoustic imaging. Nanomedicine (London, England) 10: 299–320.
58 Li, Z., Barnes, J.C., Bosoy, A. et al. (2012). Mesoporous silica nanoparticles in biomedical applications. Chemical Society Reviews 41: 2590–2605.
59 Li, Y., Wang, Z., Sun, L. et al. (2019). Nanoparticle‐based sensors for food contaminants. TrAC Trends in Analytical Chemistry 113: 74–83.
60 Liang, R., Wei, M., Evans, D.G., and Duan, X. (2014). Inorganic nanomaterials for bioimaging, targeted drug delivery and therapeutics. Chemistry Communication 50: 14071–14081.
61 Liu, H.J. and Xu, P. (2019). Smart mesoporous silica nanoparticles for protein delivery. Nanomaterials (Basel) 9 (4): 511. https://doi.org/10.3390/nano9040511.
62 Lombardo, D., Kiselev, M.A., and Caccamo, M.T. (2019). Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. Journal of Nanomaterials 2019 (3702518) https://doi.org/10.1155/2019/3702518.
63 Lujan, H., Griffin, W.C., Taube, J.H., and Sayes, C.M. (2019). Synthesis and characterization of nanometer‐sized liposomes for encapsulation and microRNA transfer to breast cancer cells. International Journal of Nanomedicine 14: 5159–5173.
64 Lyberopoulou, A., Efstathopoulos, E.P., and Gazouli, M. (2015). Nanodiagnostic and nanotherapeutic molecular platforms for cancer management. Journal of Cancer Research Updates 4: 153–162.
65 Ma, Q., Wang, Y., Jia, J., and Xiang, Y. (2018). Colorimetric aptasensors for determination of tobramycin in milk and chicken eggs based on DNA and gold nanoparticles. Food Chemistry 249: 98–103.
66 Medintz, I.L., Uyeda, H.T., Goldman, E.R., and Mattoussi, H. (2005). Quantum dot bioconjugates for imaging, labelling and sensing. Nature Materials 4 (6): 435–446.
67 Meng, J., Fan, J., Galiana, G. et al. (2009). LHRH‐functionalized superparamagnetic iron oxide nanoparticles for breast cancer targeting and contrast enhancement in MRI. Materials Science and Engineering C 29 (4): 1467–1479.
68 Mitragotri, S. and Stayton, P. (2019). Organic nanoparticles for drug delivery and imaging. MRS Bulletin 39: 219–223.
69 Mukherjee, B., Dey, N., Maji, R. et al. (2014). Current status and future scope for nanomaterials in drug delivery. In: Application of Nanotechnology in Drug Delivery (ed. A. Sezer), 1–21. UK: Intech Open.
70 Mura, S., Nicolas, J., and Couvreur, P. (2013). Stimuli‐responsive nanocarriers for drug delivery. Nature Materials 12 (11): 991–1003.
71 Muzzalupo, R. and Mazzotta, E. (2019). Do niosomes have a place in the field of drug delivery? Expert Opinion on Drug Delivery 16 (11): 1145–1147.
72 Novoselov, K.S., Geim, A.K., Morozov, S.V. et al. (2004). Electric field effect in atomically thin carbon films. Science 306: 666–669.
73 Núñez, C., Estévez, S.V., and Chantada, M.P. (2018). Inorganic nanoparticles in diagnosis and treatment of breast cancer. Journal of Biological Inorganic Chemistry 23 (3): 331–345.
74 Otles, S. and Yalcin, B. (2012). Review on the application of nanobiosensors in food analysis. Acta Scientiarum Polonorum Technologia Alimentaria 11: 7–18.
75 Pang, B., Zhao, Y., Luehmann, H. et al. (2016). 64Cu‐doped PdCu@Au tripods: a multifunctional nanomaterial for positron emission tomography and image‐guided photothermal cancer treatment. ACS Nano 10 (3): 3121–3131.
76 Patel, S., Nanda, R., and Sahoo, S. (2015). Nanotechnology in healthcare: applications and challenges. Medicinal Chemistry 5: 528–533.
77 Patra, J.K., Das, G., Fraceto, L.F. et al. (2018). Nano based drug delivery systems: recent developments and future prospects. Journal of Nanobiotechnology 16: 71. https://doi.org/10.1186/s12951‐018‐0392‐8.
78 Peiris, P.M., Toy, R., Doolittle, E. et al. (2012). Imaging metastasis using an integrin‐targeting chain‐shaped nanoparticle. ACS Nano 6 (10): 8783–8795.
79 Pérez‐Medina, C., Tang, J., Abdel‐Atti, D. et al. (2015). PET imaging of tumor‐associated macrophages with 89Zr‐labeled high‐density lipoprotein nanoparticles. Journal of Nuclear Medicine 56 (8): 1272–1277.
80 Petrie, J.R., Guzik, T.J., and Touyz, R.M. (2018). Diabetes, hypertension, and cardiovascular disease: clinical insights and vascular mechanisms. Canadian Journal of Cardiology 34 (5): 575–584.
81 Pink, D.L., Loruthai, O., Ziolek, R.M. et al. (2019). On the structure of solid lipid nanoparticles. Small 15 (45): 1903156. https://doi.org/10.1002/smll.201903156.
82 Pinto, M.F., Moura, C.C., Nunes, C. et al. (2014). A new topical formulation for psoriasis: development of methotrexate‐loaded nanostructured lipid carriers. International Journal of Pharmaceutics 477: 519–526.
83 Prakitchaiwattana, C. and Detudom, R. (2017). Contaminant sensors: nanosensors, an efficient alarm for food pathogen detection. In: Nanobiosensors (ed. A.M. Grumezescu), 511–572. Academic Press.
84 Rabiee, N., Deljoo, S., and Rabiee, M. (2018). Curcumin‐hybrid nanoparticles in drug delivery system. Asian Journal of Nanoscience and Materials 2 (1): 66–91.
85 Rai, M., Deshmukh, S., Ingle, A., and Gade, A. (2012). Silver nanoparticles: the powerful nano‐weapon against multidrug resistant bacteria. Journal of Applied Microbiology 112 (5): 841–852.
86 Rai, M., Ingle, A.P., Yadav, A. et al. (2016). Strategic role of selected noble metal nanoparticles in medicine. Critical Reviews in Microbiology 42 (5): 696–719.
87 Rajasundari, K. and Hamurugu, K. (2011). Nanotechnology and its application in medical diagnosis. Journal of Basic and Applied Chemistry 1: 26–32.
88 Ramezani, M., Danesh, N.M., Lavaee, P. et al. (2015). A novel colorimetric triple‐helix molecular switch aptasensor for ultrasensitive detection of tetracycline. Biosensors and Bioelectronics 70: 181–187.
89 Reimhult, E. and Höök, F. (2015). Design of surface modifications for nanoscale sensor applications. Sensors 15 (1): 1635–1675.
90 Ríos‐Corripio, M.A., López‐Díaz, A.S., Ramírez‐Corona, N. et al. (2020). Metallic nanoparticles: development, applications, and future trends for alcoholic and nonalcoholic beverages. In: Nanoengineering in the Beverage Industry (eds. A.M. Grumezescu and A.M. Holban), 263–300. Academic Press.
91 Rizvi, S.A.A. and Saleh, A.M. (2018). Applications of nanoparticles systems in drug delivery technology. Saudi Pharmaceutical Journal 26: 64–70.
92 Senapati, S., Mahanta, A.K., Kumar, S., and Maiti, P. (2018). Controlled drug delivery vehicles for cancer treatment and their performance. Signal Transduction and Targeted Therapy 3 (1): 7. https://doi.org/10.1038/s41392‐017‐0004‐3.
93 Sharma, M. (2019). Transdermal and intravenous nano drug delivery systems: present and future. In: Applications of Targeted Nano Drugs and Delivery Systems (eds. S. Mohapatra, S. Ranjan, N. Dasgupta, et al.), 499–550. UK: Elsevier.
94 Sharma, D., Sharma, N., Pathak, K. et al. (2018). Nanotechnology‐based drug delivery systems: challenges and opportunities. In: Drug Targeting and Stimuli Sensitive Drug Delivery Systems (ed. A. Grumezescu), 39–79. UK: Elsevier.
95 Shehada, N., Brönstrup, G., Funka, K. et al. (2015). Ultrasensitive silicon nanowire for real‐world