Группа авторов

Nanobiotechnology in Diagnosis, Drug Delivery and Treatment


Скачать книгу

apoptosis of the cells manifested by DNA fragmentation and phosphatidylserine translocation (Chen et al. 2008). Apart from unique anti‐cancer efficacy, SeNPs provide better selectivity between normal and cancer cells. It was demonstrated that SeNPs were not toxic to human osteoblast‐like cells of the GRL‐11372 line (Tran and Webster 2008); however, these nanoparticles were able to inhibit the growth of mouse osteosarcoma cells (Tran et al. 2010). In addition, it was shown that SeNPs, when given in conjugation to anastrozole, lower the bone toxicity caused by anastrozole and thus reduce the probable damage to the bone (Vekariya et al. 2013). SeNPs at a concentration of only 2 μg Se per ml effectively inhibited proliferation and induced caspase‐independent apoptosis in adenocarcinoma cells of human prostate glands without any significant toxicity to human peripheral blood mononuclear cells (Sonkusre et al. 2014). SeNPs inhibit the growth of HeLa cells and human breast cancer cells MDA‐MB‐231 depending on the dosage. In this case, the dose of Nano‐Se0 (10 μmol l−1) happened to be effective (Luo et al. 2012).

      Selenium nanocomposite and arabinogalactan had significant inhibitory effect on the cancerous cells lines such as A549, HepG‐2, and MCF‐7 in a dose‐dependent manner. The nanocomposite induced apoptosis of these cancer cells (Tang et al. 2019). The studies performed showed that elemental selenium nanocomposites and arabinogalactan are nanoparticles of zero‐valent selenium with particle size of 0.5–250 nm (depending on the production conditions) stabilized by nontoxic polysaccharide matrix‐arabinogalactan. The selenium concentration in the obtained samples of nanocomposites is 0.5–60.0% (depending on the initial ratio of arabinogalactan/precursor of selenium and on other synthesis conditions). Nanocomposites have an antitumor effect with accumulation of Se in the nucleus of a tumor cell. Tests were conducted in a culture of Ehrlich's carcinoma cells. These cells were incubated with nanocomposite of elemental selenium and arabinogalactan at a dose of 2.5, 5, and 7.5 mg l−1 (calculated as Se) in RPMI‐1640 nutritional medium at 37 °C for 24 hours, and with no addition of nanocomposite to the control group (Sukhov et al. 2017).

Photos depict the nuclei of Ehrlich's carcinoma cells after exposure to nanocomposite elemental selenium and arabinogalactan, fluorescence microscopy: (a) control group, no light; (b) experimental group, bright glow of nuclei. Photos depict Ehrlich's carcinoma cells after exposure to nanocomposite elemental selenium and arabinogalactan, DIC (a) control group; (b) experimental group.

      In another study, the antitumor activity of SeNPs synthesized biologically using Acinetobacter sp. SW30 and chemically in breast cancer cells (4T1, MCF‐7) was evaluated. The obtained results revealed that chemically synthesized SeNPs demonstrated higher anticancer activity than SeNPs synthesized by Acinetobacter sp. SW30. However, chemically synthesized SeNPs were also found to be toxic to non‐cancerous cells (NIH/3T3, HEK293). On the contrary, biogenic SeNPs were found to be more selective for breast cancer cells (Wadhwani et al. 2017). Krug et al. (2019) synthesized SeNPs coated with sulforaphane. The in vivo studies in rats showed SeNPs administered intraperitoneally were mainly excreted with urine (and, to a lesser degree, with feces), however it was partially accumulated in the animal organism. On the other hand, modified SeNPs are mainly accumulated in liver. Moreover, SeNPs conjugated with sulforaphane showed significant anticancer effect in vitro. At the same time, the cytotoxic effect on normal cells is relatively low. High antitumor activity and selectivity of the conjugate toward sick and healthy cells are extremely promising from the point of view of cancer treatment (Krug et al. 2019). Considering these facts it is clear that modification of SeNPs can increases cellular uptake and anticancer efficacy (Yang et al. 2012; Wu et al. 2013). For example, decorating the surface of SeNPs with spirulina polysaccharides significantly increased the cellular uptake and cytotoxicity of SeNPs against several cancer cell lines (Yang et al. 2012).