Борис Георгиевич Режабек

Избранные труды. Том 1


Скачать книгу

систем должны обладать определенной спецификой, неоднократно подчеркивали как математики [1—3], так и биологи [4—8]. Поведение элементов биосистем в свою очередь определяется спецификой физико-химического состояния живого вещества, находящегося в состоянии «устойчивого неравновесия» [6], которое, с современной точки зрения, можно интерпретировать, как результат взаимодействия многоуровневых внутри- клеточных нелинейных осцилляторов как кинетической, так и молекулярно-структурной природы.

      По-видимому, механизм взаимодействия нелинейных осцилляторов является одним из механизмов самоорганизации [9, 10].

      В особенности существенным этот механизм может считаться при рассмотрении внутриклеточной самоорганизации как механизма синхронизации пространственно разобщенных процессов в клетке и взаимодействия нейронов, каждый из которых непрерывно подвергается воздействию ритмических импульсных потоков.

      Хотя этот вопрос несомненно важен, в современных моделях нейронов, к сожалению, не представлены ни способность нейрона к целесообразному приспособлению, ни возможность наличия эндогенных ритмов, свойст- венных данному нейрону и позволяющих ему избирательно реагировать на входной импульсный поток. Наличие таких ритмов обсуждалось в ряде физиологических работ в связи спроблемой «пейсмекеров» [11].

      В настоящей работе представлены эксперименталь- ные данные, свидетельствующие о наличии таких ритмов в изолированной нейрорецепторной клетке речного рака.

      Методика

      Потенциалы действия (ПД) отводились внеклеточно от нервного ствола с помощью серебряного электрода диаметром 0,3 мм. Импульсы усиливались УБП1—02 и регистрировались с помощью шлейфного осциллографа Н-102.

      Раздражение производилось стеклянными микроэлек- тродами, заполненными 3М раствором КСl. Диаметр кончика измерялся под микроскопом МБР-1 и составлял 2—5мк, сопротивление 1—5 Мом.

      Микроэлектрод подводили с помощью микроманипулятора ММ-1 к избранной точке нейрона под контролем микроскопа МБР-1 (рис.1). В качестве источника раздражающего тока использовался генератор Г3—47.

      Результаты экспериментов

      – Реакция быстроадаптирующегося нейрона.

      Реакция быстроадаптирующегося (БА) нейрона на механичеcкое (адекватное) раздражение достаточно подробно изучена многими авторами [12, 13].

      При электрическом раздражении наиболее эффективным является положение микроэлектрода в области аксонного холмика (АХ), при этом возбуждение происходит, когда на микроэлектроде отрицательное напря- жение. Порог раздражения в этом случае минимален. Располагая микроэлектрод вблизи сомы или удаляясь от АХ по волокну, можно наблюдать изменение порога и даже инверсию знака раздражающего потенциала.

      При условии одинаковой реакции на толчок постоянного тока, которой можно добиться, расположив микроэлектрод при подготовке к опыту соответствующим образом, реакции различных препаратов на ритмическое раздражение совпадают с точностью