Евгений Кунин

Логика случая. О природе и происхождении биологической эволюции


Скачать книгу

ядра унаследованной генетической информации (а более конкретно, генов) вытекает из самого факта существования надежной наследственности, а в терминах более фундаментальных – из принципа подверженной ошибкам репликации (ПОР, см. гл. 2). Однако связь между «генетической информацией во всей ее полноте» и «стабильным ядром» не так уж проста. Стоит, к примеру, задать на первый взгляд невинный вопрос: «Что есть геном кишечной палочки Escherichia coli?» – как тут же возникает целый ряд серьезных затруднений. А вопрос «Что такое геном человека?» вызывает свои, не менее сложные проблемы. Вернемся мы к этому обсуждению позднее (см. гл. 5), а сейчас рассмотрим многообразие геномов, расшифрованных за последние 15 лет.

      Новая эра геномики наступила на исходе лета 1995 года. Тогда лаборатория Дж. Крейга Вентера опубликовала результаты секвенирования генома условно-патогенной бактерии гемофильного гриппа Haemophilus influenzae (Fleischmann et al., 1995). В процессе расшифровки геномной последовательности H. influenzae Вентер, Гамильтон Смит и их коллеги усовершенствовали так называемый «метод дробовика». Этот подход грубого деления генома на короткие произвольные участки с расшифровкой их по частям и последующим восстановлением полной геномной последовательности быстро превратил секвенирование длинных нуклеотидных цепочек в рутинное дело. В течение года были расшифрованы геномы некоторых других бактерий, первый геном археи (Methanocaldococcus jannaschii) и первый геном эукариота (пекарские дрожжи Saccharomyces cerevisiae) (Koonin et al., 1996). К 1999 году установился стабильный экспоненциальный рост коллекции секвенированных геномов (см. рис. 3–1).

      В диапазоне от вирусов до животных геномы различаются по размеру на шесть порядков – от нескольких тысяч до нескольких миллиардов нуклеотидов; для клеточных организмов, исключая вирусы, ширина диапазона составляет четыре порядка (см. рис. 3–2). По количеству генов диапазон значительно уже и составляет всего около четырех порядков, от двух-трех генов у простейших вирусов до приблизительно 40 тысяч генов у некоторых животных. Если же исключить вирусы и паразитические (симбиотические) бактерии, диапазон по числу генов становится довольно узким, немногим более одного порядка (см. рис. 3–2; Koonin, 2009a; Lynch, 2007c). Кажется весьма удивительным, что млекопитающие или цветковые растения имеют всего примерно в десять раз больше (легко идентифицируемых) генов, чем какая-нибудь средняя свободно живущая бактерия, и лишь примерно в два раза больше, чем бактерия из разряда наиболее сложных (см. рис. 3–2). Далее в книге рассматриваются всевозможные объяснения этих явных ограничений по числу генов в геномах всех форм жизни (см. гл. 5, 7 и 10).

      Рис. 3–1. Экспоненциальный рост коллекции секвенированных геномов. Данные с веб-сайта Национального центра биотехнологической информации (www.ncbi.nlm.nih.gov/genome/)

      Рис. 3–2. Общий размер геномов и число генов у вирусов, бактерий, архей и эукариот. Данные с веб-сайта Национального центра биотехнологической информации. Представлено в двойном логарифмическом масштабе. Стрелка указывает на точку