Группа авторов

Handbuch ADHS


Скачать книгу

predicts reinforcement learning and conflict biases. Neuron 47(4): 495–501.

      Gainetdinov RR, Jones SR et al. (1999a). Functional hyperdopaminergia in dopamine transporter knock-out mice. Biol Psychiatry 46(3): 303–11.

      Gainetdinov RR, Wetsel WC et al. (1999b). Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity. Science 283(5400): 397–401.

      Grace AA (2001). Psychostimulant actions on dopamine and limbic system function: relevance to the pathophysiology and treatment of ADHD. In: Solanto MV, Arnsten AF (Hrsg.). Stimulant Drugs and ADHD: Basic and Clinical Neuroscience. New York: Oxford University Press. S. 134–155.

      Hammerness P, Biederman J, Petty C, Henin A, Moore CM (2012). Brain biochemical effects of methylphenidate treatment using proton magnetic spectroscopy in youth with attention-deficit hyperactivity disorder: a controlled pilot study. CNS Neurosci Ther 18: 34–40.

      Hesse S, Ballaschkle O et al. (2006). The striatal dopamine transporter availability is reduced in adults with attention-deficit/hyperactivity disorder. J Nucl Med 47: 142P.

      Ilgin N, Senol S et al. (2001). Is increased D2 receptor availability associated with response to stimulant medication in ADHD. Dev Med Child Neurol 43(11): 755–60.

      Irwin M, Belendiuk K et al. (1981). Tryptophan metabolism in children with attentional deficit disorder. Am J Psychiatry 138(8): 1082–5.

      Jacobs BL, Fornal CA (1995). Serotonin and behavior: a general hypothesis. In: Bloom FE, Kupfer DJ (Eds). Psychopharmacology: The Fourth Generation of Progress. New York: Lippincott Williams & Wilkins. S. 461–469.

      Jucaite A, Fernell E et al. (2005). Reduced midbrain dopamine transporter binding in male adolescents with attention-deficit/hyperactivity disorder: association between striatal dopamine markers and motor hyperactivity. Biol Psychiatry 57(3): 229–38.

      Kirley A, Lowe N et al. (2003). Association of the 480 bp DAT1 allele with methylphenidate response in a sample of Irish children with ADHD. Am J Med Genet B Neuropsychiatr Genet 121B(1): 50–4.

      Krause J (2008). SPECT and PET of the dopamine transporter in attention-deficit/hyperactivity disorder. Expert Rev Neurother 8(4): 611–25.

      Krause KH, Dresel SH et al. (2000). Increased striatal dopamine transporter in adult patients with attention deficit hyperactivity disorder: effects of methylphenidate as measured by single photon emission computed tomography. Neurosci Lett 285(2): 107–10.

      Kusaga A, Yamashita Y et al. (2002). Increased urine phenylethylamine after methylphenidate treatment in children with ADHD. Ann Neurol 52(3): 372–4.

      Laucht M, Skowronek M et al. (2007). Interacting effects of the dopamine transporter gene and psychosocial adversity on attention-deficit/hyperactivity disorder symptoms among 15-year-olds from a high-risk community sample. Arch Gen Psychiatry 64(5): 585–90.

      Leo D, Sorrentino E et al. (2003). Altered midbrain dopaminergic neurotransmission during development in an animal model of ADHD. Neurosci Biobehav Rev 27(7): 661–9.

      Leonard BE, McCartan D et al. (2004). Methylphenidate: a review of its neuropharmacological, neuropsychological and adverse clinical effects. Hum Psychopharmacol 19(3): 151–80.

      Li D, Sham PC et al. (2006). Meta-analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD). Hum Mol Genet 15(14): 2276–84.

      Li J, Wang Y et al. (2007). Association between polymorphisms in serotonin transporter gene and attention deficit hyperactivity disorder in Chinese Han subjects. Am J Med Genet B Neuropsychiatr Genet 144B(1): 14–9.

      Lucki I (1998). The spectrum of behaviors influenced by serotonin. Biol Psychiatry 44(3): 151–62.

      Madras BK, Miller GM et al. (2005). The dopamine transporter and attention-deficit/hyperactivity disorder. Biol Psychiatry 57(11): 1397–409.

      Malmberg K, Wargelius HL et al. (2008). ADHD and Disruptive Behavior scores – associations with MAO-A and 5-HTT genes and with platelet MAO-B activity in adolescents. BMC Psychiatry 8: 28.

      Manzke T, Guenther U, Ponimaskin EG, Haller M, Dutschmann M, Schwarzacher S, Richter DW (2003). 5-HT4(a) receptors avert opioid-induced breathing depression without loss of analgesia. Science 301: 226–229.

      Martin KF, Webb AR et al. (1987). The behavioural response to the 5-hydroxytryptamine1B (5HT1B) receptor agonist–RU-24969 may exhibit a circadian variation in the mouse. Chronobiol Int 4(4): 493–8.

      Mazei MS, Pluto CP et al. (2002). Effects of catecholamine uptake blockers in the caudate-putamen and subregions of the medial prefrontal cortex of the rat. Brain Res 936(1–2): 58–67.

      Mick E, Faraone SV (2008). Genetics of attention deficit hyperactivity disorder. Child Adolesc Psychiatr Clin N Am 17(2): 261–84, vii–viii.

      Mill J, Sagvolden T et al. (2005). Sequence analysis of Drd2, Drd4, and Dat1 in SHR and WKY rat strains. Behav Brain Funct 1: 24.

      Naaijen J, Forde NJ, Lythgoe DJ, Akkermans SE, Openeer TJ, Dietrich A, Zwiers MP, Hoekstra PJ, Buitelaar JK (2016). Fronto-striatal glutamate in children with Tourette`s disorder and attention-deficit/hyperactivity disorder. Neuroimage Clin 13: 16–23.

      Neuman RJ, Lobos E et al. (2007). Prenatal smoking exposure and dopaminergic genotypes interact to cause a severe ADHD subtype. Biol Psychiatry 61(12): 1320–8.

      O’Reilly RC, Frank MJ (2006). Making working memory work: a computational model of learning in the prefrontal cortex and basal ganglia. Neural Comput 18(2): 283–328.

      Oades RD (2002). Dopamine may be ›hyper‹ with respect to noradrenaline metabolism, but ›hypo‹ with respect to serotonin metabolism in children with attention-deficit hyperactivity disorder. Behav Brain Res 130(1–2): 97–102.

      Oades RD (2005). The Roles of Norepinephrine and Serotonin in Attenion Deficit Hyperactivity Disorder. In: Gozal D, Molfese DL (Eds.). Attention Deficit Hyperactivity Disorder: From Genes to Patients. Totowa, NJ: Humana Press. S. 97–130.

      Oades RD (2006). Function and dysfunction of monamine interactions in children and adolescents with AD/HD. In: Levin ED (Ed.). Neurotransmitter Interactions and Cognitive Function. Basel: Birkhäuser. S. 207–244.

      Oades RD (2007). Role of the serotonin system in ADHD: treatment implications. Expert Rev Neurother 7(10): 1357–74.

      Oades RD, Muller B (1997). The development of conditioned blocking and monoamine metabolism in children with attention-deficit-hyperactivity disorder or complex tics and healthy controls: an exploratory analysis. Behav Brain Res 88(1): 95–102.

      Oades RD, Daniels R et al. (1998). Plasma neuropeptide-Y levels, monoamine metabolism, electrolyte excretion and drinking behavior in children with attention-deficit hyperactivity disorder. Psychiatry Res 80(2): 177–86.

      Ogdie MN, Bakker SC et al. (2006). Pooled genome-wide linkage data on 424 ADHD ASPs suggests genetic heterogeneity and a common risk locus at 5p13. Mol Psychiatry 11(1): 5–8.

      Palsson E, Sellgren C, Rydén E, Kizza R, Pelanis A, Zetterberg H, Blennow K, Landén Mikael (2017). Cerebrospinal fluid monoamine metabolite profiles in bipolar disorder, ADHD and controls. J Neural Transm 124: 1135–1143.

      Pliszka SR (2005). The neuropsychopharmacology of attention-deficit/hyperactivity disorder. Biol Psychiatry 57(11): 1385–90.

      Prince J (2008). Catecholamine Dysfunction in Attention-Deficit/Hyperactivity Disorder. J Clin Psychopharmacol 28 (Suppl. 2): 39–45.

      Rajkowski J, Majczynski H, Clayton E, Aston-Jones GS (2004). Activation of monkey locus coeruleus neurons varies with difficulty and performance in a target detection task. J Neurophysiol 92: 361–371.

      Rapoport J, Quinn P et al. (1974). Platelet serotonin of hyperactive school age boys. Br J Psychiatry 125(2): 138–40.

      Reimherr FW, Wender PH et al. (1984).