of platelets and leukocytes when compared to fixed-angle centrifugation systems commonly utilized to produce L-PRF and A-PRF.
Cells accumulate evenly when PRF is produced via horizontal centrifugation as opposed to along the back distal surface of PRF tubes on fixed-angle centrifuges.
Standard i-PRF can be further improved with horizontal centrifugation.
Conclusion
Platelet concentrates have seen a wide and steady increase in popularity since they were launched more than two decades ago. While initial concepts launched in the 1990s led to the working name platelet-rich plasma, subsequent years and discoveries have focused more specifically on their anticoagulant removal (ie, PRF). Several recent improvements in centrifugation protocols, including the low-speed centrifugation concept and horizontal centri-fugation, have led to increased concentrations of GFs and better healing potential. Both solid-PRF as well as liquid-based formulations now exist, with an array of clinical possibilities created based on the ability to accumulate supraphysiologic doses of platelets and blood-derived GFs. Future strategies to further improve PRF formulations and protocols are continuously being investigated to additionally improve clinical practice utilizing this technology.
References
1.Anfossi G, Trovati M, Mularoni E, Massucco P, Calcamuggi G, Emanuelli G. Influence of propranolol on platelet aggregation and thromboxane B2 production from platelet-rich plasma and whole blood. Prostaglandins Leukot Essent Fatty Acids 1989;36:1–7.
2.Fijnheer R, Pietersz RN, de Korte D, et al. Platelet activation during preparation of platelet concentrates: A comparison of the platelet-rich plasma and the buffy coat methods. Transfusion 1990;30:634–638.
3.Coury AJ. Expediting the transition from replacement medicine to tissue engineering. Regen Biomater 2016;3:111–113.
4.Dai R, Wang Z, Samanipour R, Koo KI, Kim K. Adipose-derived stem cells for tissue engineering and regenerative medicine applications. Stem Cells Int 2016;2016:6737345.
5.Rouwkema J, Khademhosseini A. Vascularization and angiogenesis in tissue engineering: Beyond creating static networks. Trends Biotechnol 2016;34:733–745.
6.Zhu W, Ma X, Gou M, Mei D, Zhang K, Chen S. 3D printing of functional biomaterials for tissue engineering. Curr Opin Biotechnol 2016;40:103–112.
7.Upputuri PK, Sivasubramanian K, Mark CS, Pramanik M. Recent developments in vascular imaging techniques in tissue engineering and regenerative medicine. Biomed Res Int 2015;2015:783983.
8.Gosain A, DiPietro LA. Aging and wound healing. World J Surg 2004;28:321–326.
9.Eming SA, Brachvogel B, Odorisio T, Koch M. Regulation of angiogenesis: Wound healing as a model. Prog Histochem Cytochem 2007;42:115–170.
10.Eming SA, Kaufmann J, Lohrer R, Krieg T. Chronic wounds: Novel approaches in research and therapy [in German]. Hautarzt 2007;58:939–944.
11.Miron RJ, Bosshardt DD. OsteoMacs: Key players around bone biomaterials. Biomaterials 2016;82:1–19.
12.de Vries RA, de Bruin M, Marx JJ, Hart HC, Van de Wiel A. Viability of platelets collected by apheresis versus the platelet-rich plasma technique: A direct comparison. Transfus Sci 1993;14:391–398.
13.Whitman DH, Berry RL, Green DM. Platelet gel: An autologous alternative to fibrin glue with applications in oral and maxillofacial surgery. J Oral Maxillofac Surgery 1997;55:1294–1299.
14.Marx RE, Carlson ER, Eichstaedt RM, Schimmele SR, Strauss JE, Georgeff KR. Platelet-rich plasma: Growth factor enhancement for bone grafts. Oral Surg Oral Med Oral Pathol Oral Radiol Endodontol 1998;85:638–646.
15.Jameson C. Autologous platelet concentrate for the production of platelet gel. Lab Med 2007;38:39–42.
16.Marx RE. Platelet-rich plasma: Evidence to support its use. J Oral Maxillofac Surg 2004;62:489–496.
17.Anitua E, Prado R, Troya M, et al. Implementation of a more physiological plasma rich in growth factor (PRGF) protocol: Anticoagulant removal and reduction in activator concentration. Platelets 2016;27:459–466.
18.Abd El Raouf M, Wang X, Miusi S, et al. Injectable-platelet rich fibrin using the low speed centrifugation concept improves cartilage regeneration when compared to platelet-rich plasma. Platelets 2019;30:213–221.
19.Kobayashi E, Fluckiger L, Fujioka-Kobayashi M, et al. Comparative release of growth factors from PRP, PRF, and advanced-PRF. Clin Oral Investig 2016;20:2353–2360.
20.Miron RJ, Fujioka-Kobayashi M, Hernandez M, et al. Injectable platelet rich fibrin (i-PRF): Opportunities in regenerative dentistry? Clin Oral Investig 2017;21:2619–2627.
21.Wang X, Zhang Y, Choukroun J, Ghanaati S, Miron RJ. Effects of an injectable platelet-rich fibrin on osteoblast behavior and bone tissue formation in comparison to platelet-rich plasma. Platelets 2018;29:48–55.
22.Lucarelli E, Beretta R, Dozza B, et al. A recently developed bifacial platelet-rich fibrin matrix. Eur Cell Mater 2010;20:13–23.
23.Saluja H, Dehane V, Mahindra U. Platelet-rich fibrin: A second generation platelet concentrate and a new friend of oral and maxillofacial surgeons. Ann Maxillofac Surg 2011;1:53–57.
24.Choukroun J, Adda F, Schoeffler C, Vervelle A. Une opportunité en paro-implantologie: Le PRF. Implantodontie 2001;42:e62.
25.Dohan Ehrenfest DM, Del Corso M, Diss A, Mouhyi J, Charrier JB. Three-dimensional architecture and cell composition of a Choukroun’s platelet-rich fibrin clot and membrane. J Periodontol 2010;81:546–555.
26.Choukroun J, Diss A, Simonpieri A, et al. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part IV: Clinical effects on tissue healing. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;101:e56–e60.
27.Dohan DM, Choukroun J, Diss A, et al. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part I: Technological concepts and evolution. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;101:e37–e44.
28.Dohan DM, Choukroun J, Diss A, et al. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part II: Platelet-related biologic features. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;101:e45–e50.
29.Martin P, Leibovich SJ. Inflammatory cells during wound repair: The good, the bad and the ugly. Trends Cell Biol 2005;15:599–607.
30.Tsirogianni AK, Moutsopoulos NM, Moutsopoulos HM. Wound healing: Immunological aspects. Injury 2006;37(suppl 1):S5–S12.
31.Adamson R. Role of macrophages in normal wound healing: An overview. J Wound Care 2009;18:349–351.
32.Davis VL, Abukabda AB, Radio NM, et al. Platelet-rich preparations to improve healing. Part I: Workable options for every size practice. J Oral Implantol 2014;40:500–510.
33.Davis VL, Abukabda AB, Radio NM, et al. Platelet-rich preparations to improve healing. Part II: Platelet activation and enrichment, leukocyte inclusion, and other selection criteria. J Oral Implantol 2014;40:511–521.
34.Ghasemzadeh M, Hosseini E. Intravascular leukocyte migration through platelet thrombi: Directing leukocytes to sites of vascular injury. Thromb Haemost 2015;113:1224–1235.
35.Batoon L, Millard SM, Raggatt LJ, Pettit AR. Osteomacs and bone regeneration. Curr Osteoporos Rep 2017;15:385–395.
36.Chang MK, Raggatt LJ, Alexander KA, et al. Osteal tissue macrophages are intercalated throughout human and mouse bone lining tissues and regulate osteoblast function in vitro and in vivo. J Immunol 2008;181:1232–1244.
37.Winkler IG, Sims NA, Pettit AR, et al. Bone marrow macrophages maintain hematopoietic stem cell (HSC) niches and their depletion mobilizes HSCs. Blood 2010;116:4815–4828.
38.Dohan DM, Choukroun J, Diss A, et al. Platelet-rich fibrin (PRF): A second-generation platelet concentrate. Part III: Leucocyte activation: A new feature for platelet concentrates? Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2006;101:e51–e55.