regular waves; time stepTcmean period between wave crestsTppeak wave period, 1/fpTzmean zero crossing wave periodufluctuating component of wind speed in the x direction; induced velocity in upstream direction (as in Figure 4.5); perturbation velocity in x direction (downstream, as in Figure 4.11); in‐plane plate deflection in x direction; gear ratio; water particle velocity in x directionu*friction velocity in boundary layerU∞free‐stream velocityUfree‐stream velocityU, U(t)instantaneous wind speed in the along‐wind direction
![](
AAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAAmJLR0QA/4ePzL8AAAAJcEhZ
cwAAFxIAABcSAWef0lIAAAAHdElNRQflAx8KCxw/5R3aAAABTklEQVQ4y5WTS0tCURSFv3t7oWEk
lARZCSLlwGrcQAcRSL8iaOg46n9Es6BBo/6DNug5EXqAE+lBlII9oMjKiloNusm9dq9w1+hs1sc5
e23ONiR8qFM80cBoC5mE6QTA+FCOglW465tBNon/3m6SJoLZBhch+qyz4a930w/sG29mfCZPmTdE
kBgZhoBztqnSQYosPVYQS5+qakkooFXdqCFJetWBxrWia31ZVBOXpDWheQv91a0WVbPVtt6/OARm
/54FoMwoEfeoNYqEmHFEO2bSazKnnJNkwmY2uCTlhe/yyQz9NvMKgxF3vM4eJhmHeUKCbnf8jBJj
TNssUXLUDvyIB6YYtll3PJLwwitAki6bVWSUsBc+0GLUyTMHXniaKAUqVvXOOomWmYPjv2+wTJIF
YtyzT5QcgXb4NztscUEvcbJkXBfy3za9YBDESz+PyJh7XrYGVQAAACV0RVh0ZGF0ZTpjcmVhdGUA
MjAyMS0wMy0zMVQxMDoxMToyOCswNjowMKLyDcAAAAAldEVYdGRhdGU6bW9kaWZ5ADIwMjEtMDMt
MzFUMTA6MTE6MjgrMDY6MDDTr7V8AAAAIXRFWHRwczpIaVJlc0JvdW5kaW5nQm94ADExeDExKzE0
Mys2NDfsw/r3AAAAOnRFWHRwczpMZXZlbABBZG9iZUZvbnQtMS4wOiBUaW1lc05ld1JvbWFuTVRT
dGQtSXRhbGljIDAwMS4wMDYKLUu2CgAAAEh0RVh0cHM6U3BvdENvbG9yLTAALWowIC1FKiAtcHAg
MTkgLW8gLi9mbGFzdDAzX2VxX2VQdWJGaWdzL2ZsYXN0MDMtaTAwMTkuZXBzyvKtJQAAAB10RVh0
cHM6U3BvdENvbG9yLTEAZmxhc3QwM19lcS5kdmnzIOwMAAAAAElFTkSuQmCC
)
mean component of wind speed in the along‐wind direction – typically taken over a period of 10 min or 1 hUaveannual average wind speed at hub heightUDstreamwise velocity at the rotor discUiturbine lower cut‐in wind speedUWstreamwise velocity in the far wakeUe1extreme 3 s gust wind speed with 1 year return periodUe50extreme 3 s gust wind speed with 50 year return periodUturbine upper cut‐out wind speedUrturbine rated wind speed, defined as the wind speed at which the turbine's rated power is reachedUrefreference wind speed defined as 10 min mean wind speed at hub height with 50 year return periodU1strain energy of plate flexureU2in‐plane strain energyvfluctuating component of wind speed in the y direction; induced velocity in y direction; in‐plane plate deflection in y directionVairspeed of an autogyro; streamwise velocity at rotor disc, U∞(l – a) (
Section 7.1.15); voltage (shown in bold when complex)VArreactive power volt‐amperes‐reactiveV(t)instantaneous lateral wind speedVAapparent power electrical volt‐amperesVffibre volume fraction in composite materialwfluctuating component of wind speed in the z direction; induced velocity in z direction; out‐of‐plane plate deflection; weighting factor; water particle velocity in z directionw(r)blade shell skin thickness (
Section 6.4.2)Wwind velocity relative to a point on rotating blade; electrical power lossxdownwind coordinate – fixed and rotating axis systems; horizontal co‐ordinate in the direction of wave propagation; downwind displacementx(t)stochastic component of a variablexnlength of near wake regionxmode of distribution
![](
AAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAAmJLR0QA/4ePzL8AAAAJcEhZ
cwAAFxIAABcSAWef0lIAAAAHdElNRQflAx8KCx1I4i1MAAABB0lEQVQoz42SPy9DURyGn9s0DGKR
ohFGRhGRbjoYu4nBJLH7CEbxISwSX4CYOvlTkZhIk7ZB2JoQkmKoaGk8Ble1V3Df6eR9n5yc93d+
gRJDSYA3yjR+RJJiIjwHCnfkuCYRwVossBm6gUKDAnWCCPbOGJnQDeK9LREHio0lv3vdUOWeDGkA
Klwyy2A7DvVqwTWHXfZFzZs15c5XaBv71Kr9Hlp0w5LH1n7DyqZddNvnbjuKNZ131CujijTtYZwa
1f8Gcs4AfRz8jT1QZIlJ9qnT4vEndkuJJ/JMM8IcZc444qJrXVRdN+2KJ6qeOuSMWzY7KoRfX2GP
LFPhAu2SIEdvx2UxN+QD7wrgdHHBujEAAAAldEVYdGRhdGU6Y3JlYXRlADIwMjEtMDMtMzFUMTA6
MTE6MjkrMDY6MDAEhQZ0AAAAJXRFWHRkYXRlOm1vZGlmeQAyMDIxLTAzLTMxVDEwOjExOjI5KzA2
OjAwddi+yAAAAB90RVh0cHM6SGlSZXNCb3VuZGluZ0JveAA5eDkrMTQzKzY0OUA6bjAAAAA6dEVY
dHBzOkxldmVsAEFkb2JlRm9udC0xLjA6IFRpbWVzTmV3Um9tYW5NVFN0ZC1JdGFsaWMgMDAxLjAw
NgotS7YKAAAASHRFWHRwczpTcG90Q29sb3ItMAAtajAgLUUqIC1wcCAyMCAtbyAuL2ZsYXN0MDNf
ZXFfZVB1YkZpZ3MvZmxhc3QwMy1pMDAyMC5lcHPepT5cAAAAHXRFWHRwczpTcG90Q29sb3ItMQBm
bGFzdDAzX2VxLmR2afMg7AwAAAAASUVORK5CYII=
)
1first mode component of steady tip displacementXelectrical inductive reactanceXncoefficient of nth term in Dean's stream functionylateral coordinate with respect to vertical axis (starboard positive) – fixed axis systemylateral coordinate with respect to blade axis – rotating axis systemylateral displacement; reduced variate of distribution; height above seabedzvertical coordinate (upwards positive) – fixed axis system; height above ground datum; height above water level; delay operatorzradial coordinate along blade axis – rotating axis systemzground roughness lengthz1number of teeth on pinion gearz(t)periodic component of a variableZsection modulus; externally applied load on flanged joint
Zelectrical impedance (bold indicates a complex quantity)
Greek
αangle of attack – i.e. angle between air flow incident on the blade and the blade chord line; wind‐shear power law exponent; exponent of reduced variate in three parameter Weibull distribution; exponent of JONSWAP spectrum peak shape parameter; direction change of geostrophic wind relative to surfaceαxmeridional elastic imperfection reduction factorβinclination of local blade chord to rotor plane (i.e. blade twist plus pitch angle, if any); pitch angle (Sections 8.3.5 & 8.3.16) radius of environmental contourβrprobability weighted moment raised to power rγyaw angle; Euler's constant (= 0.5772); JONSWAP spectrum peak shape parameterγLload factorγmfpartial safety factor for material fatigue strengthγmupartial safety factor for material ultimate strengthΓblade circulation; vortex strengthΓ()gamma functionδlogarithmic decrement of combined aerodynamic and structural damping; width of tower shadow deficit region; depth of surface irregularity; width of jet slot; wake velocity deficitδ3angle between axis of teeter hinge and the line perpendicular to both the rotor axis and the low‐speed shaft axisδalogarithmic decrement of aerodynamic dampingδslogarithmic decrement of structural dampingΔ1 − ν12ν21; discrete jump (e.g. ()− − ()+)εproportion of axial stress to total stress; eddy viscosityεturbulence dissipationε1, ε2, ε3proportion of time in which a variable takes the maximum, mean, or minimum values in a three‐level square waveζteeter angleηellipsoidal coordinate; shaft tilt; one eighth of Lock number (defined in Section 5.8.8); skewness parameter; water surface elevationηbcrest elevation above still water level for a breaking waveθblade pitch angle; wind speed direction change; random phase angle; azimuthal direction; cylindrical panel coordinate; brake disc temperatureκvon Karman's constantκ(t − t)auto‐correlation functionκL(s)cross‐correlation function between velocity components at points in space a distance s apart, in the direction parallel to the line joining themκT(s)cross‐correlation function between velocity components at points in space a distance s apart, in the direction perpendicular to the line joining themκu(r, τ)auto‐correlation function for along‐wind velocity component at radius r on stationary rotor
![](
AAB6JgAAgIQAAPoAAACA6AAAdTAAAOpgAAA6mAAAF3CculE8AAAAAmJLR0QA/4ePzL8AAAAJcEhZ
cwAAFxIAABcSAWef0lIAAAAHdElNRQflAx8KCx+m7ExgAAADr0lEQVRIx+3WW2jWdRzH8dezzWm6
2Zalpmal2VohuYxKIzRSo4OBgaRQUBl5EcEQKUiiUoTooroRQyiMEhISkdSkUrwIV5ZYauo85Knm
sdK5ze2Z27eL/j7+n51Qb7zp89z8v4ff9/f+Hf7f/5OJcJVVcLUBLgnhhH3qrx7COctsctACB/P8
p2zVfkUTHrDrchDOe89uT5rkqOUp/07va73CM+xrlTWXjvCdlZ5VpFW9EymA+aa474oAGORFa6y+
NIQ2n6twG+rUuivx/mOecSZeIQAMNMsiuy8FodkBVQqxTrlHE+9njpiRympSj/NO6/rtDo0acr/z
YKxbfKAtySiC8/aoddATbsdfVqkxxTQjZLHfRvMNBacsNd6gZPBuX9rgac97xzYfG9YJYL8P/YJM
cnnf8DiYrNoOd19EaHfGAnUewxartdumzHRzfGaFZq+pSkr+qtbs3ARDDVVjlpW+ku1iB46rts01
Tmpyk4yM5iRymybfphGKVWg12mBf2OM5I1QrQpVRGl2nV67oDi0G5qxSha6XNdhixw3phLDOJIv1
MkejxQrQP4mU62ezNoUXEKh1yAMW6a9af5QnqSVK8orWoW/K/kGZBg/mSqfVYpiZip21z2Q35sWK
9XVEk9KLCD9psNIYK5XqSVkU5qwztioyuksAik1UiD8dMbxDLCOjNbmQBdBmk2EmqunQNDqrDOdy
1mF7DXFvN7mZBPaohg57SWhXnMQL4KRfjLXQcO+p6xFhlILU92K7s6Z1Kt9RTbJacNTJ1CE1uVm/
iwh7/OEBFeb4zZLU0PX2gkNqE1+VAQ7kMn5wg4dTk+0y11ItHRBKZHxjm4/8nfOd0mjchaYUEfFu
9I4NEbE3KqMslsXJaIvmWBv3xDsR0R6zY378p2zMiKnREhER9XF/PBLn4qLeCtEv1ke+jsW9Icpi
VjTnfJ/GrbEreS6CSgtVaXXYCxoctcVEbUYqUYk6P5uW0Pcy2yu2G4t2z7hDn9R6pzpts2MddmGQ
D3xigFf1TjxZq81UkbsY3aomxsaBiFgUY+JYztsWb8ZLqfXkqzHmxc4u/O151vKYHsdzVg/fiO+N
MNxhK4xJtaMCc5VaknT7fDX6VJXKLiKZ1HONjd7Oq9iNsjaZ4KxNmj2kNRXp723tvu5yzPjckXWn
Wj963Z0pT1F3qfV+V2mtYc5odMTIPIhX/C3y1gblua7avQZ7Oa+/9oBQaqasCfp4SoVbO0SLUht5
ebq2kyfz/594/AseRtudkbDTjAAAACV0RVh0ZGF0ZTpjcmVhdGUAMjAyMS0wMy0zMVQxMDoxMToz
MCswNjowMF23QzkAAAAldEVYdGRhdGU6bW9kaWZ5ADIwMjEtMDMtMzFUMTA6MTE6MzErMDY6MDCK
nfAxAAAAIXRFWHRwczpIaVJlc0JvdW5kaW5nQm94ADMxeDEyKzE0Mys2NDe1EnN5AAAAOnRFWHRw
czpMZXZlbABBZG9iZUZvbnQtMS4wOiBTVElYTWF0aC1JdGFsaWMgVmVyc2lvbiAxLjEtYmV0YTEK
eOJ9sgAAAB90RVh0cHM6U3BvdENvbG9yLTAAU1RJWE1hdGgtUmVndWxhcn9gMxwAAABIdEVYdHBz
OlNwb3RDb2xvci0xAC1qMCAtRSogLXBwIDIxIC1vIC4vZmxhc3QwM19lcV9lUHViRmlncy9mbGFz
dDAzLWkwMDIxLmVwc6ChKn8AAAAddEVYdHBzOlNwb3RDb2xvci0yAGZsYXN0MDNfZXEuZHZp2uhY
/gAAAABJRU5ErkJggg==
)
auto‐correlation function for along‐wind velocity component as seen by a point at radius r on a rotating rotorκu(r1, r2, τ)cross‐correlation function between along‐wind velocity components at radii r1 and r2 (not necessarily on same blade), for stationary rotor
cross‐correlation function between along‐wind velocity components as seen by points (not necessarily on same blade) at radii r1 and r2 on a rotating rotorλtip speed ratio; latitude; ratio of longitudinal to transverse buckle half wavelengths; relative shell slenderness; curling factor of breaking waveλrtangential speed of blade element at radius r divided by wind speed: local speed ratioλ(d)ratio measuring influence of loading near cantilever root on first mode resonance (
Section 12.7.4)λ*(d)approximate value of λ(d)Λyaw rateμnon‐dimensional radial position, r/R; viscosity; coefficient of frictionμi(r)mode shape of ith blade modeμ1(y)mode shape of first mode of offshore support structureμi(z)mode shape of ith tower modeμT(z)tower first mode shapeμTJ(r)normalised rigid body deflection of blade j resulting from excitation of tower first modeμzmean value of variable zνellipsoidal coordinate; mean zero up‐crossing frequency; rank in series of data points; kinematic viscosity; Poisson's ratioν12, ν21Poisson's ratios for uniaxial composite plyξdamping ratioρair density; water density
normalised cross‐correlation function between along‐wind velocity components as seen by points (not necessarily on same blade) at radii r1 and r2 on a rotating rotor
σblade solidity; standard deviation; stress
mean stressσcrelastic critical buckling stressσMstandard deviation of bending momentσM1standard deviation of first mode resonant bending moment, at blade root for blade resonance, and at tower base for tower resonanceσMBstandard deviation of quasi‐static bending moment (or bending moment background response)σMhstandard deviation of hub dishing momentσMTstandard deviation of teeter moment for rigidly mounted, two bladed rotor
standard deviation of mean of blade root bending moments for two bladed rotorσQ1standard deviation of generalised load with respect to first modeσrrotor solidity at a given radius, r, i.e. Bc/(2πr)σustandard