Группа авторов

The Esophagus


Скачать книгу

64:796–812.

      21 21 Collman PI, Tremblay L, Diamant NE. The distribution of spinal and vagal sensory neurons that innervate the esophagus of the cat. Gastroenterology 1992; 103:817–22.

      22 22 Jean A. The nucleus tractus solitarius: neuroanatomic, neurochemical and functional aspects. Arch Int Physiol Biochim Biophys 1991; 99:A3–52.

      23 23 Amirali A, Tsai G, Schrader N, et al. Mapping of brain stem neuronal circuitry active during swallowing. Ann Otol Rhinol Laryngol 2001; 110:502–13.

      24 24 Altschuler SM, Bao X, Miselis RR. Dendritic architecture of hypoglossal motoneurons projecting to extrinsic tongue musculature in the rat. J Comp Neurol 1994; 342:538–50.

      25 25 Barrett RT, Bao X, Miselis RR, et al. Brain stem localization of rodent esophageal premotor neurons revealed by transneuronal passage of pseudorabies virus. Gastroenterology 1994; 107:728–37.

      26 26 Jean A. Brain stem control of swallowing: neuronal network and cellular mechanisms. Physiol Rev 2001; 81:929–69.

      27 27 Altschuler SM, Bao XM, Miselis RR. Dendritic architecture of nucleus ambiguus motoneurons projecting to the upper alimentary tract in the rat. J Comp Neurol 1991; 309:402–14.

      28 28 Bieger D, Hopkins DA. Viscerotopic representation of the upper alimentary tract in the medulla oblongata in the rat: the nucleus ambiguus. J Comp Neurol 1987; 262:546–62.

      29 29 Lawn AM. The nucleus ambiguus of the rabbit. J Comp Neurol 1966; 127:307–20.

      30 30 Hyland NP, Abrahams TP, Fuchs K, et al. Organization and neurochemistry of vagal preganglionic neurons innervating the lower esophageal sphincter in ferrets. J Comp Neurol 2001; 430:222–34.

      31 31 Kalia M, Mesulam MM. Brain stem projections of sensory and motor components of the vagus complex in the cat: II. Laryngeal, tracheobronchial, pulmonary, cardiac, and gastrointestinal branches. J Comp Neurol 1980; 193:467–508.

      32 32 Collman PI, Tremblay L, Diamant NE. The central vagal efferent supply to the esophagus and lower esophageal sphincter of the cat. Gastroenterology 1993; 104:1430–8.

      33 33 Hornby PJ, Abrahams TP. Central control of lower esophageal sphincter relaxation. Am J Med 2000; 108 Suppl 4a:90S–98S.

      34 34 Rossiter CD, Norman WP, Jain M, et al. Control of lower esophageal sphincter pressure by two sites in dorsal motor nucleus of the vagus. Am J Physiol 1990; 259:G899–906.

      35 35 Bieger D NW. Neural circuits and mediators regulating swallowing in the brainstem. GI Motility Online. 2006.

      36 36 Goyal RK, Chaudhury A. Physiology of normal esophageal motility. J Clin Gastroenterol 2008; 42:610–9.

      37 37 Umezaki T, Matsuse T, Shin T. Medullary swallowing‐related neurons in the anesthetized cat. Neuroreport 1998; 9:1793–8.

      38 38 Kalia M. Cerebral pathways in reflex muscular inhibition from type J pulmonary receptors. J Physiol 1969; 204:92P–93P.

      39 39 Roman C, Tieffenbach L. Recording the unit activity of vagal motor fibers innervating the baboon esophagus. J Physiol (Paris) 1972; 64:479–506.

      40 40 Roman C. Nervous control of esophageal peristalsis. J Physiol (Paris) 1966; 58:79–108.

      41 41 Jean A. Localization and activity of medullary swallowing neurones. J Physiol (Paris) 1972; 64:227–68.

      42 42 Zoungrana OR, Amri M, Car A, et al. Intracellular activity of motoneurons of the rostral nucleus ambiguus during swallowing in sheep. J Neurophysiol 1997; 77:909–22.

      43 43 Beyak MJ, Collman PI, Xue S, et al. Release of nitric oxide in the central nervous system mediates tonic and phasic contraction of the cat lower oesophageal sphincter. Neurogastroenterol Motil 2003; 15:401–7.

      44 44 Beyak MJ, Xue S, Collman PI, et al. Central nervous system nitric oxide induces oropharyngeal swallowing and esophageal peristalsis in the cat. Gastroenterology 2000; 119:377–85.

      45 45 Martin RE, Sessle BJ. The role of the cerebral cortex in swallowing. Dysphagia 1993; 8:195–202.

      46 46 Broussard DL, Altschuler SM. Central integration of swallow and airway‐protective reflexes. Am J Med 2000; 108 Suppl 4a:62S–67S.

      47 47 Martin RE, Kemppainen P, Masuda Y, et al. Features of cortically evoked swallowing in the awake primate (Macaca fascicularis). J Neurophysiol 1999; 82:1529–41.

      48 48 Hamdy S, Aziz Q, Rothwell JC, et al. Recovery of swallowing after dysphagic stroke relates to functional reorganization in the intact motor cortex. Gastroenterology 1998; 115:1104–12.

      49 49 Hamdy S, Aziz Q, Rothwell JC, et al. The cortical topography of human swallowing musculature in health and disease. Nat Med 1996; 2:1217–24.

      50 50 Hamdy S, Xue S, Valdez D, et al. Induction of cortical swallowing activity by transcranial magnetic stimulation in the anaesthetized cat. Neurogastroenterol Motil 2001; 13:65–72.

      51 51 Martin RE, MacIntosh BJ, Smith RC, et al. Cerebral areas processing swallowing and tongue movement are overlapping but distinct: a functional magnetic resonance imaging study. J Neurophysiol 2004; 92:2428–43.

      52 52 Sumi T. The activity of brainstem respiratory neurons and spinal respiratory motorneurons during swallowing. J Neurophysiol 1963; 26:466–477.

      53 53 Gestreau C, Milano S, Bianchi AL, et al. Activity of dorsal respiratory group inspiratory neurons during laryngeal‐induced fictive coughing and swallowing in decerebrate cats. Exp Brain Res 1996; 108:247–56.

      54 54 Martin‐Harris B. Coordination of respiration and swallowing. Part 1: Oral cavity, pharynx and esophagus GI Motility Online 2006.

      55 55 Hamdy S. Role of cerebral cortex in the control of swallowing. Part 1: Oral cavity, pharynx, and esophagus. GI Motility Online 2006.

      56 56 Silva AC, Fabio SR, Dantas RO. A scintigraphic study of oral, pharyngeal, and esophageal transit in patients with stroke. Dysphagia 2008; 23:165–71.

      57 57 Hamdy S, Rothwell JC, Aziz Q, et al. Long‐term reorganization of human motor cortex driven by short‐term sensory stimulation. Nat Neurosci 1998; 1:64–8.

      58 58 Donner MW, Bosma JF, Robertson DL. Anatomy and physiology of the pharynx. Gastrointest Radiol 1985; 10:196–212.

      59 59 Pouderoux P, Kahrilas PJ. The pharyngoesophageal segment: Normal structure and function. Dis Esophagus 1985; 8:233–241.

      60 60 Saitoh E, Shibata S, Matsuo K, et al. Chewing and food consistency: effects on bolus transport and swallow initiation. Dysphagia 2007; 22:100–7.

      61 61 Yoneda M, Saitoh K. Modification of masticatory rhythmicity leading to the initiation of the swallowing reflex in humans. Dysphagia 2018; 33:358–368.

      62 62 Preiksaitis HG, Mayrand S, Robins K, et al. Coordination of respiration and swallowing: effect of bolus volume in normal adults. Am J Physiol 1992; 263:R624–30.

      63 63 Alberts MJ, Horner J, Gray L, et al. Aspiration after stroke: lesion analysis by brain MRI. Dysphagia 1992; 7:170–3.

      64 64 Daniels SK. Neurological disorders affecting oral, pharyngeal swallowing. Part 1: Oral cavity, pharynx and esophagus. GI Motility Online 2006.

      65 65 Jaradeh S. Muscle disorders affecting oral and pharyngel swallowing. Part 1: Oral cavity, pharynx and esophagus. GI Motility Online 2006.

      66 66 B. J. Radiographic evaluation of motility of mouth and pharynx. Part 1: Oral cavity, pharynx and esophagus. GI Motility Online 2006.

      67 67 Ergun GA, Kahrilas PJ, Lin S, et al. Shape, volume, and content of the deglutitive pharyngeal chamber imaged by ultrafast computerized tomography. Gastroenterology 1993; 105:1396–403.

      68 68 Gaige TA, Benner T, Wang R, et al. Three dimensional myoarchitecture of the human tongue determined in vivo by diffusion tensor imaging with tractography. J Magn Reson Imaging 2007; 26:654–61.

      69 69 Jones B, Donner M, eds. Normal and abnormal swallowing. imaging in diagnosis and therapy. New York: Springer‐Verlag; 1990.

      70 70