Letters. https://doi.org/10.1029/96GL01602
103 Marquardt, H., & Miyagi, L. (2015). Slab stagnation in the shallow lower mantle linked to an increase in mantle viscosity. Nature Geoscience, 8(4), 311–314. https://doi.org/10.1038/ngeo2393
104 Marquardt, H., Speziale, S., Reichmann, H. J., Frost, D. J., Schilling, F. R., & Garnero, E. J. (2009). Elastic shear anisotropy of ferropericlase in earth’s lower mantle. Science, 324(5924), 224–226. https://doi.org/10.1126/science.1169365
105 Martinez, I., Wang, Y., Guyot, F., Liebermann, R. C., & Doukham, J.‐C. (1997). Microstructures and iron partitioning in (Mg,Fe)SiO3 perovskite‐ (Mg,Fe)O magnesiowustite assemblages: An analytical transmission electron microscopy study. Journal of Geophysical Research, 102(B3), 5265–5280. https://doi.org/10.1029/96JB03188
106 Matas, J., Bass, J., Ricard, Y., Mattern, E., & Bukowinski, M. S. T. (2007). On the bulk composition of the lower mantle: Predictions and limitations from generalized inversion of radial seismic profiles. Geophysical Journal International, 170(2), 764–780. https://doi.org/10.1111/j.1365‐246X.2007.03454.x
107 Mattern, E., Matas, J., Ricard, Y., & Bass, J. (2005). Lower mantle composition and temperature from mineral physics and thermodynamic modelling. Geophysical Journal International, 160(3), 973–990. https://doi.org/10.1111/j.1365‐246X.2004.02549.x
108 Matthies, S., & Humbert, M. (1993). The Realization of the Concept of a Geometric Mean for Calculating Physical Constants of Polycrystalline Materials. Physica Status Solidi (B), 177(2), K47–K50. https://doi.org/10.1002/pssb.2221770231
109 Matthies, S., Priesmeyer, H. G., & Daymond, M. R. (2001). On the diffractive determination of single‐crystal elastic constants using polycrystalline samples. Journal of Applied Crystallography, 34(5), 585–601. https://doi.org/10.1107/S0021889801010482
110 McNamara, A. K., Van, P. E., & Karato, S. (2002). Development of anisotropic structure in the Earth’s lower mantle by solid‐state convection Is there evidence for the localization of dislocation creep in the lowermost mantle ?, 416(March), 310–314.
111 Meade, C., & Jeanloz, R. (1988). Yield strength of MgO to 40 GPa. Journal of Geophysical Research, 93(B4), 3261. https://doi.org/10.1029/JB093iB04p03261
112 Meade, C., & Jeanloz, R. (1990). The strength of mantle silicates at high pressures and room temperature: implications for the viscosity of the mantle. Nature, 348(6301), 533–535. https://doi.org/10.1038/348533a0
113 Meade, C., Silver, P. G., & Kaneshima, S. (1995). Laboratory and seismological observations of lower mantle isotropy. Geophysical Research Letters, 22(10), 1293–1296. https://doi.org/10.1029/95GL01091
114 Merkel, S., & Cordier, P. (2016). Deformation of Core and Lower Mantle Materials (pp. 89–99). American Geophysical Union (AGU). https://doi.org/10.1002/9781118992487.ch7
115 Merkel, S., & Yagi, T. (2005). X‐ray transparent gasket for diamond anvil cell high pressure experiments. Review of Scientific Instruments, 76(4), 2004–2006. https://doi.org/10.1063/1.1884195
116 Merkel, S., Wenk, H. R., Shu, J., Shen, G., Gillet, P., Mao, H., & Hemley, R. J. (2002). Deformation of polycrystalline MgO at pressures of the lower mantle. Journal of Geophysical Research: Solid Earth, 107(B11), ECV 3‐1‐ECV 3‐17. https://doi.org/10.1029/2001JB000920
117 Merkel, S., Wenk, H. R., Badro, J., Montagnac, G., Gillet, P., Mao, H. K., & Hemley, R. J. (2003). Deformation of (Mg0.9,Fe0.1)SiO3Perovskite aggregates up to 32 GPa. Earth and Planetary Science Letters, 209(3–4), 351–360. https://doi.org/10.1016/S0012‐821X(03)00098‐0
118 Merkel, S., Wenk, H. R., Gillet, P., Mao, H. kwang, & Hemley, R. J. (2004). Deformation of polycrystalline iron up to 30GPa and 1000K. Physics of the Earth and Planetary Interiors, 145(1–4), 239–251. https://doi.org/10.1016/j.pepi.2004.04.001
119 Merkel, S., Kubo, A., Miyagi, L., Speziale, S., Duffy, T. S., Mao, H. K., & Wenk, H. R. (2006). Plastic deformation of MgGeO3 post‐perovskite at lower mantle pressures. Science, 311(5761), 644–646. https://doi.org/10.1126/science.1121808
120 Merkel, S., McNamara, A. K., Kubo, A., Speziale, S., Miyagi, L., Meng, Y., et al. (2007). Deformation of (Mg,Fe)SiO3 post‐perovskite and D″ anisotropy. Science, 316(5832), 1729–1732. https://doi.org/10.1126/science.1140609
121 Merkel, S., Tomé, C., & Wenk, H. R. (2009). Modeling analysis of the influence of plasticity on high pressure deformation of hcp‐Co. Physical Review B ‐ Condensed Matter and Materials Physics, 79(6), 1–13. https://doi.org/10.1103/PhysRevB. 79.064110
122 Merkel, S., Gruson, M., Wang, Y., Nishiyama, N., & Tomé, C. N. (2012). Texture and elastic strains in hcp‐iron plastically deformed up to 17.5 GPa and 600 K: experiment and model. Modelling and Simulation in Materials Science and Engineering, 20(2), 024005. https://doi.org/10.1088/0965‐0393/20/2/024005
123 Metsue, A., Carrez, P., Mainprice, D., & Cordier, P. (2009). Numerical modelling of dislocations and deformation mechanisms in CaIrO3 and MgGeO3 post‐perovskites‐Comparison with MgSiO3 post‐perovskite. Physics of the Earth and Planetary Interiors, 174(1–4), 165–173. https://doi.org/10.1016/j.pepi.2008.04.003
124 Mitrovica, J. X., & Forte, A. M. (2004). A new inference of mantle viscosity based upon joint inversion of convection and glacial isostatic adjustment data. Earth and Planetary Science Letters, 225(1–2), 177–189. https://doi.org/10.1016/J.EPSL.2004.06.005
125 Miyagi, L., & Wenk, H.‐R. (2016). Texture development and slip systems in bridgmanite and bridgmanite + ferropericlase aggregates. Physics and Chemistry of Minerals, 43(8), 597–613. https://doi.org/10.1007/s00269‐016‐0820‐y
126 Miyagi, L., Nishiyama, N., Wang, Y., Kubo, A., West, D. V., Cava, R. J., et al. (2008). Deformation and texture development in CaIrO3 post‐perovskite phase up to 6 GPa and 1300 K. Earth and Planetary Science Letters, 268(3–4), 515–525. https://doi.org/10.1016/j.epsl.2008.02.005
127 Miyagi, L., Kunz, M., Knight, J., Nasiatka, J., Voltolini, M., & Wenk, H.‐R. (2008). In situ phase transformation and deformation of iron at high pressure and temperature. Journal of Applied Physics, 104(10), 103510. https://doi.org/10.1063/1.3008035
128 Miyagi, L., Merkel, S., Yagi, T., Sata, N., Ohishi, Y., & Wenk, H. R. (2009). Diamond anvil cell deformation of CaSiO3 perovskite up to 49 GPa. Physics of the Earth and Planetary Interiors, 174(1–4), 159–164.