Higo, Y., & Takahashi, E. (2016). Mantle dynamics inferred from the crystallographic preferred orientation of bridgmanite. Nature, 539(7627), 81–84. https://doi.org/10.1038/nature19777
185 Tullis, J., & Wenk, H.‐R. (1994). Effect of muscovite on the strength and lattice preferred orientations of experimentally deformed quartz aggregates. Materials Science and Engineering: A, 175(1–2), 209–220. https://doi.org/10.1016/0921‐5093(94)91060‐X
186 Tullis, T. E., Horowitz, F. G., & Tullis, J. (1991). Flow laws of polyphase aggregates from end‐member flow laws. Journal of Geophysical Research, 96(B5), 8081. https://doi.org/10.1029/90JB02491
187 Turner, P. A., & Tomé, C. N. (1994). A study of residual stresses in Zircaloy‐2 with rod texture. Acta Metallurgica et Materialia, 42(12), 4143–4153. https://doi.org/10.1016/0956‐7151(94)90191‐0
188 Uchida, T., Wang, Y., Rivers, M. L., & Sutton, S. R. (2004). Yield strength and strain hardening of MgO up to 8 GPa measured in the deformation‐DIA with monochromatic X‐ray diffraction. Earth and Planetary Science Letters, 226(1–2), 117–126. https://doi.org/10.1016/j.epsl.2004.07.023
189 van’t Hoff, M. J. H. (1884). Etudes de dynamique chimique. Amsterdam: Fredrick Muller and Company. https://doi.org/10.1002/recl.18840031003
190 Walker, A. M., Forte, A. M., Wookey, J., Nowacki, A., & Kendall, J. M. (2011). Elastic anisotropy of D′′ predicted from global models of mantle flow. Geochemistry, Geophysics, Geosystems, 12(10), 1–22. https://doi.org/10.1029/2011GC003732
191 Walker, A. M., Dobson, D. P., Wookey, J., Nowacki, A., & Forte, A. M. (2018). The anisotropic signal of topotaxy during phase transitions in D″. Physics of the Earth and Planetary Interiors, 276, 159–171. https://doi.org/10.1016/j.pepi.2017.05.013
192 Walte, N. P., Heidelbach, F., Miyajima, N., & Frost, D. (2007). Texture development and TEM analysis of deformed CaIrO3: Implications for the D″ layer at the core‐mantle boundary. Geophysical Research Letters, 34(8), 1–5. https://doi.org/10.1029/2007GL029407
193 Walte, N. P., Heidelbach, F., Miyajima, N., Frost, D. J., Rubie, D. C., & Dobson, D. P. (2009). Transformation textures in post‐perovskite: Understanding mantle flow in the D’ layer of the earth. Geophysical Research Letters, 36(4), 0–4. https://doi.org/10.1029/2008GL036840
194 Wang, H., Wu, P. D., Tomé, C. N., & Huang, Y. (2010). A finite strain elastic‐viscoplastic self‐consistent model for polycrystalline materials. Journal of the Mechanics and Physics of Solids, 58(4), 594–612. https://doi.org/10.1016/j.jmps.2010.01.004
195 Wang, Y., Guyot, F., Yeganeh‐Haeri, A., & Liebermann, R. C. (1990). Twinning in MgSiO3 perovskite. Science, 248(4954), 468–471. https://doi.org/10.1126/science.248.4954.468
196 Wang, Y., Guyot, F., & Liebermann, R. C. (1992). Electron microscopy of (Mg, Fe)SiO 3 Perovskite: Evidence for structural phase transitions and implications for the lower mantle. Journal of Geophysical Research, 97(B9), 12327. https://doi.org/10.1029/92JB00870
197 Wang, Y., Durham, W. B., Getting, I. C., & Weidner, D. J. (2003). The deformation‐DIA: A new apparatus for high temperature triaxial deformation to pressures up to 15 GPa. Review of Scientific Instruments, 74(6), 3002–3011. https://doi.org/10.1063/1.1570948
198 Wang, Y., Hilairet, N., Nishiyama, N., Yahata, N., Tsuchiya, T., Morard, G., & Fiquet, G. (2013). High‐pressure, high‐temperature deformation of CaGeO3 (perovskite)±MgO aggregates: Implications for multiphase rheology of the lower mantle. Geochemistry, Geophysics, Geosystems, 14(9), 3389–3408. https://doi.org/10.1002/ggge.20200
199 Weertman, J. (1970). The creep strength of the Earth’s mantle. Reviews of Geophysics, 8(1), 145. https://doi.org/10.1029/RG008i001p00145
200 Weertman, Johannes, & Weertman, J. R. (1975). High Temperature Creep of Rock and Mantle Viscosity. Annual Review of Earth and Planetary Sciences, 3(1), 293–315. https://doi.org/10.1146/annurev.ea.03.050175.001453
201 Wenk, H.‐R., Canova, G., Bréchet, Y., & Flandin, L. (1997). A deformation‐based model for recrystallization of anisotropic materials. Acta Materialia, 45(8), 3283–3296. https://doi.org/10.1016/S1359‐6454(96)00409‐0
202 Wenk, H.‐R., Matthies, S., Hemley, R. J., Mao, H. K., & Shu, J. (2000). The plastic deformation of iron at pressures of the Earth’s inner core. Nature, 405(6790), 1044–1047. https://doi.org/10.1038/35016558
203 Wenk, H.‐R., Lonardeli, I., Pehl, J., Devine, J., Prakapenka, V., Shen, G., & Mao, H. K. (2004). In situ observation of texture development in olivine, ringwoodite, magnesiowüstite and silicate perovskite at high pressure. Earth and Planetary Science Letters, 226(3–4), 507–519. https://doi.org/10.1016/j.epsl.2004.07.033
204 Wenk, H.‐R., Lonardelli, I., Merkel, S., Miyagi, L., Pehl, J., Speziale, S., & Tommaseo, C. E. (2006). Deformation textures produced in diamond anvil experiments, analysed in radial diffraction geometry. Journal of Physics Condensed Matter, 18(25). https://doi.org/10.1088/0953‐8984/18/25/S02
205 Wenk, H.‐R., Speziale, S., McNamara, A. K., & Garnero, E. J. (2006). Modeling lower mantle anisotropy development in a subducting slab. Earth and Planetary Science Letters, 245(1–2), 302–314. https://doi.org/10.1016/j.epsl.2006.02.028
206 Wenk, H.‐R., Cottaar, S., Tomé, C. N., McNamara, A., & Romanowicz, B. (2011). Deformation in the lowermost mantle: From polycrystal plasticity to seismic anisotropy. Earth and Planetary Science Letters, 306(1–2), 33–45. https://doi.org/10.1016/J.EPSL.2011.03.021
207 Wenk, H.‐R., Lutterotti, L., Kaercher, P., Kanitpanyacharoen, W., Miyagi, L., & Vasin, R. (2014). Rietveld texture analysis from synchrotron diffraction images. II. Complex multiphase materials and diamond anvil cell experiments. Powder Diffraction, 29(3). https://doi.org/10.1017/S0885715614000360
208 Wookey, J., Kendall, J.‐M., & Barruol, G. (2002). Mid‐mantle deformation inferred from seismic anisotropy. Nature, 415(6873), 777–780. https://doi.org/10.1038/415777a
209 Wu, X., Lin, J. F., Kaercher, P., Mao, Z., Liu, J., Wenk, H. R., & Prakapenka, V. B. (2017). Seismic anisotropy of the D″ layer induced by (001) deformation of post‐perovskite. Nature Communications, 8, 1–6. https://doi.org/10.1038/ncomms14669
210 Xu, J., Yamazaki, D., Katsura,