Группа авторов

Mantle Convection and Surface Expressions


Скачать книгу

S., Daniel, I., Dabin, Y., Cardon, H., Tucoulou, R., & Susini, J. (2009). A diamond anvil cell for x‐ray fluorescence measurements of trace elements in fluids at high pressure and high temperature. Review of Scientific Instruments, 80(3), 033906. https://doi.org/10.1063/1.3100202

      158 Piet, H., Badro, J., Nabiei, F., Dennenwaldt, T., Shim, S.‐H., Cantoni, M., et al. (2016). Spin and valence dependence of iron partitioning in Earth’s deep mantle. Proceedings of the National Academy of Sciences, 113(40), 11127–11130. https://doi.org/10.1073/PNAS.1605290113

      159 Poirier, J.‐P. (1985). Creep of crystals : high‐temperature deformation processes in metals, ceramics, and minerals. Cambridge University Press.

      160 Poudens, A., Bacroix, B., & Bretheau, T. (1995). Influence of microstructures and particle concentrations on the development of extrusion textures in metal matrix composites. Materials Science and Engineering: A, 196(1–2), 219–228. https://doi.org/10.1016/0921‐5093(94)09703‐8

      161 Prakapenka, V. B., Kubo, A., Kuznetsov, A., Laskin, A., Shkurikhin, O., Dera, P., et al. (2008). Advanced flat top laser heating system for high pressure research at GSECARS: application to the melting behavior of germanium. High Pressure Research, 28(3), 225–235. https://doi.org/10.1080/08957950802050718

      162 Raterron, P., Merkel, S., & III, C. W. H. (2013). Axial temperature gradient and stress measurements in the deformation‐DIA cell using alumina pistons. Review of Scientific Instruments, 84(4), 043906. https://doi.org/10.1063/1.4801956

      163 Reali, R., Van Orman, J. A., Pigott, J. S., Jackson, J. M., Boioli, F., Carrez, P., & Cordier, P. (2019). The role of diffusion‐driven pure climb creep on the rheology of bridgmanite under lower mantle conditions. Scientific Reports, 9(1), 2053. https://doi.org/10.1038/s41598‐018‐38449‐8

      164 Ricolleau, A., Perrillat, J.‐P., Fiquet, G., Daniel, I., Matas, J., Addad, A., et al. (2010). Phase relations and equation of state of a natural MORB: Implications for the density profile of subducted oceanic crust in the Earth’s lower mantle. Journal of Geophysical Research, 115(B8), B08202. https://doi.org/10.1029/2009JB006709

      165 Rodi, F., & Babel, D. (1965). Ternare Oxide der Ubergangsmetalle. IV. Erdalkaliiridium(IV)‐oxide: Kristallstruktur von CalrO3. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 336(1–2), 17–23. https://doi.org/10.1002/zaac.19653360104

      166 Romanowicz, B., & Wenk, H. R. (2017). Anisotropy in the deep Earth. Physics of the Earth and Planetary Interiors, 269(May), 58–90. https://doi.org/10.1016/j.pepi.2017.05.005

      167 Rudolph, M. L., Lekić, V., & Lithgow‐Bertelloni, C. (2015). Viscosity jump in Earth’s mid‐mantle. Science (New York, N.Y.), 350(6266), 1349–52. https://doi.org/10.1126/science.aad1929

      168 Samuel, H., & Tosi, N. (2012). The influence of post‐perovskite strength on the Earth’s mantle thermal and chemical evolution. Earth and Planetary Science Letters, 323–324, 50–59. https://doi.org/10.1016/J.EPSL.2012.01.024

      169 Sato, F., & Sumino, K. (1980). The yield strength and dynamic behaviour of dislocations in MgO crystals at high temperatures. Journal of Materials Science, 15(7), 1625–1634. https://doi.org/10.1007/BF00550578

      170 Shen, G., Rivers, M. L., Wang, Y., & Sutton, S. R. (2001). Laser heated diamond cell system at the advanced photon source for in situ x‐ray measurements at high pressure and temperature. Review of Scientific Instruments, 72(2), 1273–1282. https://doi.org/10.1063/1.1343867

      171 Shieh, S. R., Duffy, T. S., & Shen, G. (2004). Elasticity and strength of calcium silicate perovskite at lower mantle pressures. Physics of the Earth and Planetary Interiors, 143(1–2), 93–105. https://doi.org/10.1016/j.pepi.2003.10.006

      172 Shim, S.‐H., Jeanloz, R., & Duffy, T. S. (2002). Tetragonal structure of CaSiO3 perovskite above 20 GPa. Geophysical Research Letters, 29(24), 2166. https://doi.org/10.1029/2002GL016148

      173 Shim, S.‐H., Duffy, T. S., Jeanloz, R., & Shen, G. (2004). Stability and crystal structure of MgSiO3 perovskite to the core‐mantle boundary. Geophysical Research Letters, 31(10). https://doi.org/10.1029/2004GL019639

      174 Singh, A. K. (1993). The lattice strains in a specimen (cubic system) compressed nonhydrostatically in an opposed anvil device. Journal of Applied Physics, 73(9), 4278–4286. https://doi.org/10.1063/1.352809

      175 Singh, A. K., Mao, H., Shu, J., & Hemley, R. J. (1998). Estimation of Single‐Crystal Elastic Moduli from Polycrystalline X‐Ray Diffraction at High Pressure: Application to FeO and Iron. Physical Review Letters, 80(10), 2157–2160. https://doi.org/10.1103/PhysRevLett.80.2157

      176 Singh, A. K., Liermann, H. P., & Saxena, S. K. (2004). Strength of magnesium oxide under high pressure: Evidence for the grain‐size dependence. Solid State Communications, 132(11), 795–798. https://doi.org/10.1016/j.ssc.2004.09.050

      177 Stretton, I., Heidelbach, F., Mackwell, S., & Langenhorst, F. (2001). Dislocation creep of magnesiowuüstite (Mg0.8Fe0.2O). Earth and Planetary Science Letters, 194, 229–240.

      178 Takeda, Y.‐T. (1998). Flow in rocks modelled as multiphase continua: Application to polymineralic rocks. Journal of Structural Geology, 20(11), 1569–1578. https://doi.org/10.1016/S0191‐8141(98)00043‐1

      179 Takeda, Y.‐T., & Griera, A. (2006). Rheological and kinematical responses to flow of two‐phase rocks. Tectonophysics, 427(1–4), 95–113. https://doi.org/10.1016/J.TECTO.2006.03.050

      180 Tommaseo, C. E., Devine, J., Merkel, S., Speziale, S., & Wenk, H. R. (2006). Texture development and elastic stresses in magnesiowustite at high pressure. Physics and Chemistry of Minerals, 33(2), 84–97. https://doi.org/10.1007/s00269‐005‐0054‐x

      181 Tommasi, A., Goryaeva, A., Carrez, P., Cordier, P., & Mainprice, D. (2018). Deformation, crystal preferred orientations, and seismic anisotropy in the Earth’s D″ layer. Earth and Planetary Science Letters, 492, 35–46. https://doi.org/10.1016/J.EPSL.2018.03.032

      182 Treagus, S. H. (2002). Modelling the bulk viscosity of two‐phase mixtures in terms of clast shape. Journal of Structural Geology, 24(1), 57–76. https://doi.org/10.1016/S0191‐8141(01)00049‐9

      183 Tsuchiya, T., & Tsuchiya, J. (2007). Structure and elasticity of Cmcm CaIrO3 and their pressure dependences: Ab initio calculations. Physical Review B ‐ Condensed Matter and Materials Physics, 76(14), 2–5. https://doi.org/10.1103/PhysRevB.76.144119

      184 Tsujino,