href="https://doi.org/10.1126/science.291.5503.468">https://doi.org/10.1126/science.291.5503.468
93 Fiquet, G., Dewaele, A., Andrault, D., Kunz, M., Bihan, T.L. (2000). Thermoelastic properties and crystal structure of MgSiO3 perovskite at lower mantle pressure and temperature conditions. Geophys. Res. Lett., 27, 21–24. https://doi.org/10.1029/1999GL008397
94 Fischer, R.A., Campbell, A.J., Chidester, B.A., Reaman, D.M., Thompson, E.C., Pigott, J.S., et al. (2018). Equations of state and phase boundary for stishovite and CaCl2‐type SiO2. Am. Mineral., 103, 792–802. https://doi.org/10.2138/am‐2018‐6267
95 Frost, D.A., Rost, S., Garnero, E.J., & Li, M. (2017). Seismic evidence for Earth’s crusty deep mantle. Earth Planet. Sci. Lett., 470, 54–63. https://doi.org/10.1016/j.epsl.2017.04.036
96 Frost, D.J., & Langenhorst, F. (2002). The effect of Al2O3 on Fe‐Mg partitioning between magnesiowüstite and magnesium silicate perovskite. Earth Planet. Sci. Lett., 199, 227–241.
97 Frost, D.J., Liebske, C., Langenhorst, F., McCammon, C.A., Trønnes, R.G., & Rubie, D.C. (2004). Experimental evidence for the existence of iron‐rich metal in the Earth’s lower mantle. Nature, 428, 409–412. https://doi.org/10.1038/nature02413
98 Fu, S., Yang, J., Tsujino, N., Okuchi, T., Purevjav, N., & Lin, J.‐F. (2019). Single‐crystal elasticity of (Al,Fe)‐bearing bridgmanite and seismic shear wave radial anisotropy at the topmost lower mantle. Earth Planet. Sci. Lett., 518, 116–126. https://doi.org/10.1016/j.epsl.2019.04.023
99 Fu, S., Yang, J., Zhang, Y., Okuchi, T., McCammon, C., Kim, H.‐I., et al. (2018). Abnormal elasticity of Fe‐bearing bridgmanite in the Earth’s lower mantle. Geophys. Res. Lett., 45, 4725–4732. https://doi.org/10.1029/2018GL077764
100 Fujino, K., Nishio‐Hamane, D., Suzuki, K., Izumi, H., Seto, Y., & Nagai, T. (2009). Stability of the perovskite structure and possibility of the transition to the post‐perovskite structure in CaSiO3, FeSiO3, MnSiO3 and CoSiO3. Phys. Earth Planet. Inter., 177, 147–151. https://doi.org/10.1016/j.pepi.2009.08.009
101 Fukao, Y., & Obayashi, M. (2013). Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J. Geophys. Res. – Solid Earth, 118, 5920–5938. https://doi.org/10.1002/2013JB010466
102 Funamori, N., & Jeanloz, R. (1997). High‐pressure transformation of Al2O3. Science, 278, 1109–1111. https://doi.org/10.1126/science.278.5340.1109
103 Funamori, N., Jeanloz, R., Miyajima, N., & Fujino, K. (2000). Mineral assemblages of basalt in the lower mantle. J. Geophys. Res. – Solid Earth, 105, 26037–26043. https://doi.org/10.1029/2000JB900252
104 Gaffney, E.S. (1972). Crystal field effects in mantle minerals. Phys. Earth Planet. Inter., 6, 385–390. https://doi.org/10.1016/0031‐9201(72)90062‐3
105 Gaffney, E.S., & Anderson, D.L. (1973). Effect of low‐spin Fe2+ on the composition of the lower mantle. J. Geophys. Res., 78, 7005–7014. https://doi.org/10.1029/JB078i029p07005
106 Garnero, E.J., McNamara, A.K., & Shim, S.‐H. (2016). Continent‐sized anomalous zones with low seismic velocity at the base of Earth’s mantle. Nat. Geosci., 9, 481–489. https://doi.org/10.1038/ngeo2733
107 Giannozzi, P., de Gironcoli, S., Pavone, P., & Baroni, S. (1991). Ab initio calculation of phonon dispersions in semiconductors. Phys. Rev. B, 43, 7231–7242. https://doi.org/10.1103/PhysRevB.43.7231
108 Giura, P., Paulatto, L., He, F., Lobo, R.P.S.M., Bosak, A., Calandrini, E., et al. (2019). Multiphonon anharmonicity of MgO. Phys. Rev. B, 99, 220304. https://doi.org/10.1103/PhysRevB.99.220304
109 Glazyrin, K., Boffa Ballaran, T., Frost, D.J., McCammon, C., Kantor, A., Merlini, M., et al. (2014). Magnesium silicate perovskite and effect of iron oxidation state on its bulk sound velocity at the conditions of the lower mantle. Earth Planet. Sci. Lett., 393, 182–186. https://doi.org/10.1016/j.epsl.2014.01.056
110 Gréaux, S., Irifune, T., Higo, Y., Tange, Y., Arimoto, T., Liu, Z., & Yamada, A. (2019). Sound velocity of CaSiO3 perovskite suggests the presence of basaltic crust in the Earth’s lower mantle. Nature, 565, 218–221. https://doi.org/10.1038/s41586‐018‐0816‐5
111 Gréaux, S., Kono, Y., Wang, Y., Yamada, A., Zhou, C., Jing, Z., et al. (2016). Sound velocities of aluminum‐bearing stishovite in the mantle transition zone. Geophys. Res. Lett., 43, 4239–4246. https://doi.org/10.1002/2016GL068377
112 Gwanmesia, G.D., Liebermann, R.C., & Guyot, F. (1990). Hot‐pressing and characterization of polycrystals of β‐Mg2SiO4, for acoustic velocity measurements. Geophys. Res. Lett., 17, 1331–1334. https://doi.org/10.1029/GL017i009p01331
113 Haussühl, S. (2007). Physical Properties of Crystals: An Introduction. Wiley‐VCH, Weinheim. https://doi.org/10.1002/9783527621156
114 Hill, R. (1952). The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc., A65, 349–354. https://doi.org/10.1088/0370‐1298/65/5/307
115 Hirose, K., Fei, Y., Ma, Y., & Mao, H.‐K. (1999). The fate of subducted basaltic crust in the Earth’s lower mantle. Nature, 397, 53–56. https://doi.org/10.1038/16225
116 Hirose, K., Takafuji, N., Sata, N., & Ohishi, Y. (2005). Phase transition and density of subducted MORB crust in the lower mantle. Earth Planet. Sci. Lett., 237, 239–251. https://doi.org/10.1016/j.epsl.2005.06.035
117 Hofmann, A.W. (1997). Mantle geochemistry: the message from oceanic volcanism. Nature, 385, 219–229. https://doi.org/10.1038/385219a0
118 Hohenberg, P., & Kohn, W. (1964). Inhomogeneous electron gas. Phys. Rev., 136, B864–B871. https://doi.org/10.1103/PhysRev.136.B864
119 Holland, T.J.B., Hudson, N.F.C., Powell, R., & Harte, B. (2013). New thermodynamic models and calculated phase equilibria in NCFMAS for basic and ultrabasic compositions through the transition zone into the uppermost lower mantle. J. Petrol., 54, 1901–1920. https://doi.org/10.1093/petrology/egt035
120 Holmström, E., & Stixrude, L. (2015). Spin crossover in ferropericlase from first‐principles molecular dynamics. Phys. Rev. Lett., 114, 117202. https://doi.org/10.1103/PhysRevLett.114.117202
121 Holzapfel, W. (2009). Equations of state for solids under strong compression. Z. Kristallogr. –