Группа авторов

Mantle Convection and Surface Expressions


Скачать книгу

N., Liao, Y., Zhai, S., Wang, Y., et al. (2016). Elasticity of single‐crystal superhydrous phase B at simultaneous high pressure‐temperature conditions. Geophys. Res. Lett., 43, 8458–8465. https://doi.org/10.1002/2016GL070027

      178 Liermann, H.‐P., Merkel, S., Miyagi, L., Wenk, H.‐R., Shen, G., Cynn, H., & Evans, W.J. (2009). Experimental method for in situ determination of material textures at simultaneous high pressure and high temperature by means of radial diffraction in the diamond anvil cell. Rev. Sci. Instrum., 80, 104501. https://doi.org/10.1063/1.3236365

      179 Lin, J.‐F., Degtyareva, O., Prewitt, C.T., Dera, P., Sata, N., Gregoryanz, E., et al. (2004). Crystal structure of a high‐pressure/high‐temperature phase of alumina by in situ X‐ray diffraction. Nat. Mater., 3, 389–393. https://doi.org/10.1038/nmat1121

      180 Lin, J.‐F., Jacobsen, S.D., Sturhahn, W., Jackson, J.M., Zhao, J., & Yoo, C.‐S. (2006). Sound velocities of ferropericlase in the Earth’s lower mantle. Geophys. Res. Lett., 33, L22304. https://doi.org/10.1029/2006GL028099

      181 Lin, J.‐F., Mao, Z., Yang, J., Liu, J., Xiao, Y., Chow, P., & Okuchi, T. (2016). High‐spin Fe2+ and Fe3+ in single‐crystal aluminous bridgmanite in the lower mantle. Geophys. Res. Lett., 43, 6952–6959. https://doi.org/10.1002/2016GL069836

      182 Lin, J.‐F., Speziale, S., Mao, Z., & Marquardt, H. (2013). Effects of the electronic spin transitions of iron in lower mantle minerals: Implications for deep mantle geophysics and geochemistry. Rev. Geophys., 51, 244–275. https://doi.org/10.1002/rog.20010

      183 Lin, J.‐F., Struzhkin, V.V., Jacobsen, S.D., Hu, M.Y., Chow, P., Kung, J., et al. (2005). Spin transition of iron in magnesiowüstite in the Earth’s lower mantle. Nature, 436, 377–380. https://doi.org/10.1038/nature03825

      184 Lin, J.‐F., & Tsuchiya, T. (2008). Spin transition of iron in the Earth’s lower mantle. Phys. Earth Planet. Inter., 170, 248–259. https://doi.org/10.1016/j.pepi.2008.01.005

      185 Lin, J.‐F., Vanko, G., Jacobsen, S.D., Iota, V., Struzhkin, V.V., Prakapenka, V.B., et al. (2007). Spin transition zone in Earth’s lower mantle. Science, 317, 1740–1743. https://doi.org/10.1126/science.1144997

      186 Liu, J., Dorfman, S.M., Zhu, F., Li, J., Wang, Y., Zhang, D., Xiao, Y., et al. (2018). Valence and spin states of iron are invisible in Earth’s lower mantle. Nat. Commun., 9, 1284. https://doi.org/10.1038/s41467‐018‐03671‐5

      187 Mainprice, D. (2015). Seismic anisotropy of the deep Earth from a mineral and rock physics perspective. In Schubert, G. (Ed.), Treatise on Geophysics, 2nd ed., Elsevier, Amsterdam, pp. 487–538. https://doi.org/10.1016/B978-0-444-53802-4.00044-0

      188 Mainprice, D., Barruol, G., Ismail, W.B. (2000). The seismic anisotropy of the Earth’s mantle: from single crystal to polycrystal. In Karato, S.‐I., Forte, A., Liebermann, R., Masters, G., Stixrude, L. (Eds.), Earth’s Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale. American Geophysical Union, Washington, D.C., pp. 237–264. https://doi.org/10.1029/GM117p0237

      189 Mao, Z., Fan, D., Lin, J.‐F., Yang, J., Tkachev, S.N., Zhuravlev, K., & Prakapenka, V.B. (2015). Elasticity of single‐crystal olivine at high pressures and temperatures. Earth Planet. Sci. Lett., 426, 204–215. https://doi.org/10.1016/j.epsl.2015.06.045

      190 Mao, Z., Lin, J.‐F., Jacobsen, S.D., Duffy, T.S., Chang, Y.‐Y., Smyth, J.R., et al. (2012). Sound velocities of hydrous ringwoodite to 16 GPa and 673 K. Earth Planet. Sci. Lett., 331–332, 112–119. https://doi.org/10.1016/j.epsl.2012.03.001

      191 Mao, Z., Lin, J.‐F., Liu, J., & Prakapenka, V.B. (2011). Thermal equation of state of lower‐mantle ferropericlase across the spin crossover. Geophys. Res. Lett., 38, L23308. https://doi.org/10.1029/2011GL049915

      192 Marquardt, H., Buchen, J., Méndez, A.S.J., Kurnosov, A., Wendt, M., Rothkirch, A., et al. (2018). Elastic softening of (Mg0.8Fe0.2)O ferropericlase across the iron spin crossover measured at seismic frequencies. Geophys. Res. Lett., 45, 6862–6868. https://doi.org/10.1029/2018GL077982

      193 Marquardt, H., Speziale, S., Jahn, S., Ganschow, S., & Schilling, F.R. (2009a). Single‐crystal elastic properties of (Y,Yb)3Al5O12. J. Appl. Phys., 106, 093519. https://doi.org/10.1063/1.3245285

      194 Marquardt, H., Speziale, S., Reichmann, H.J., Frost, D.J., & Schilling, F.R. (2009b). Single‐crystal elasticity of (Mg0.9Fe0.1)O to 81 GPa. Earth Planet. Sci. Lett., 287, 345–352. https://doi.org/10.1016/j.epsl.2009.08.017

      195 Marquardt, H., Speziale, S., Reichmann, H.J., Frost, D.J., Schilling, F.R., & Garnero, E.J. (2009c). Elastic shear anisotropy of ferropericlase in Earth’s lower mantle. Science, 324, 224–226. https://doi.org/10.1126/science.1169365

      196 Masters, G., Laske, G., Bolton, H., & Dziewonski, A. (2000). The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: Implications for chemical and thermal structure. In Karato, S.‐I., Forte, A., Liebermann, R., Masters, G., Stixrude, L. (Eds.), Earth’s Deep Interior: Mineral Physics and Tomography From the Atomic to the Global Scale. American Geophysical Union, Washington, D.C., pp. 63–87. https://doi.org/10.1029/GM117p0063

      197 Matas, J., Bass, J., Ricard, Y., Mattern, E., & Bukowinski, M.S.T. (2007). On the bulk composition of the lower mantle: predictions and limitations from generalized inversion of radial seismic profiles. Geophys. J. Int., 170, 764–780. https://doi.org/10.1111/j.1365‐246X.2007.03454.x

      198 Mattern, E., Matas, J., Ricard, Y., & Bass, J. (2005). Lower mantle composition and temperature from mineral physics and thermodynamic modelling. Geophys. J. Int., 160, 973–990. https://doi.org/10.1111/j.1365‐246X.2004.02549.x

      199 McDonough, W.F., & Sun, S. ‐s. (1995). The composition of the Earth. Chem. Geol., 120, 223–253. https://doi.org/10.1016/0009‐2541(94)00140‐4

      200 McNamara, A.K. (2019). A review of large low shear velocity provinces and ultra low velocity zones. Tectonophysics, 760, 199–220. https://doi.org/10.1016/j.tecto.2018.04.015

      201 Méndez, A.S.J., Marquardt, H., Husband, R.J., Schwark, I., Mainberger, J., Glazyrin, K., et al. (2020). A resistively‐heated dynamic diamond anvil cell (RHdDAC) for fast compression x‐ray diffraction experiments at high temperatures. Rev. Sci. Instrum., 91, 073906. https://doi.org/10.1063/5.0007557.

      202 Miletich, R., Hejny, C., Krauss, G., & Ullrich, A. (2005). Diffraction techniques: Shedding light on structural changes at extreme conditions. In Miletich, R. (Ed.), Mineral Behaviour at Extreme Conditions. European Mineralogical Union, pp. 281–338.