Rev. B, 55, 3465–3471. https://doi.org/10.1103/PhysRevB.55.3465
150 Karki, B.B., Wentzcovitch, R.M., de Gironcoli, S., & Baroni, S. (2000). High‐pressure lattice dynamics and thermoelasticity of MgO. Phys. Rev. B, 61, 8793–8800. https://doi.org/10.1103/PhysRevB.61.8793
151 Karki, B.B., Wentzcovitch, R.M., de Gironcoli, S., & Baroni, S. (2001b). First principles thermoelasticity of MgSiO3‐perovskite: consequences for the inferred properties of the lower mantle. Geophys. Res. Lett., 28, 2699–2702. https://doi.org/10.1029/2001GL012910
152 Karki, B.B., Wentzcovitch, R.M., de Gironcoli, S., & Baroni, S. (1999). First‐principles determination of elastic anisotropy and wave velocities of MgO at lower mantle conditions. Science, 286, 1705–1707. https://doi.org/10.1126/science.286.5445.1705
153 Kato, J., Hirose, K., Ozawa, H., & Ohishi, Y. (2013). High‐pressure experiments on phase transition boundaries between corundum, Rh2O3(II)‐and CaIrO3‐type structures in Al2O3. Am. Mineral., 98, 335–339. https://doi.org/10.2138/am.2013.4133
154 Katsura, T., Yoneda, A., Yamazaki, D., Yoshino, T., & Ito, E. (2010). Adiabatic temperature profile in the mantle. Phys. Earth Planet. Inter., 183, 212–218. https://doi.org/10.1016/j.pepi.2010.07.001
155 Kavner, A., & Nugent, C. (2008). Precise measurements of radial temperature gradients in the laser‐heated diamond anvil cell. Rev. Sci. Instrum., 79, 024902. https://doi.org/10.1063/1.2841173
156 Kawai, K., & Tsuchiya, T. (2015). Small shear modulus of cubic CaSiO3 perovskite. Geophys. Res. Lett., 42, 2718–2726. https://doi.org/10.1002/2015GL063446
157 Kennett, B.L.N., & Engdahl, E.R. (1991). Traveltimes for global earthquake location and phase identification. Geophys. J. Int., 105, 429–465. https://doi.org/10.1111/j.1365‐246X.1991.tb06724.x
158 Kennett, B.L.N., Engdahl, E.R., & Buland, R. (1995). Constraints on seismic velocities in the Earth from traveltimes. Geophys. J. Int., 122, 108–124. https://doi.org/10.1111/j.1365‐246X.1995.tb03540.x
159 Keppler, H., Kantor, I., & Dubrovinsky, L.S. (2007). Optical absorption spectra of ferropericlase to 84 GPa. Am. Mineral., 92, 433–436. https://doi.org/10.2138/am.2007.2454
160 Kesson, S.E., Gerald, J.D.F., & Shelley, J.M. (1998). Mineralogy and dynamics of a pyrolite lower mantle. Nature, 393, 252–255. https://doi.org/10.1038/30466
161 Kesson, S.E., Gerald, J.D.F., & Shelley, J.M.G. (1994). Mineral chemistry and density of subducted basaltic crust at lower‐mantle pressures. Nature, 372, 767–769. https://doi.org/10.1038/372767a0
162 Khan, A., Connolly, J.A.D., & Taylor, S.R. (2008). Inversion of seismic and geodetic data for the major element chemistry and temperature of the Earth’s mantle. J. Geophys. Res. – Solid Earth, 113, B09308. https://doi.org/10.1029/2007JB005239
163 Kobayashi, Y., Kondo, T., Ohtani, E., Hirao, N., Miyajima, N., Yagi, T., et al. (2005). Fe‐Mg partitioning between (Mg, Fe)SiO3 post‐perovskite, perovskite, and magnesiowüstite in the Earth’s lower mantle. Geophys. Res. Lett., 32, L19301. https://doi.org/10.1029/2005GL023257
164 Koelemeijer, P., Ritsema, J., Deuss, A., & van Heijst, H.‐J. (2016). SP12RTS: a degree‐12 model of shear‐ and compressional‐wave velocity for Earth’s mantle. Geophys. J. Int., 204, 1024–1039. https://doi.org/10.1093/gji/ggv481
165 Kohn, W., & Sham, L.J. (1965). Self‐consistent equations including exchange and correlation effects. Phys. Rev., 140, A1133–A1138. https://doi.org/10.1103/PhysRev.140.A1133
166 Komabayashi, T., Hirose, K., Nagaya, Y., Sugimura, E., & Ohishi, Y. (2010). High‐temperature compression of ferropericlase and the effect of temperature on iron spin transition. Earth Planet. Sci. Lett., 297, 691–699. https://doi.org/10.1016/j.epsl.2010.07.025
167 Komabayashi, T., & Omori, S. (2006). Internally consistent thermodynamic data set for dense hydrous magnesium silicates up to 35GPa, 1600°C: Implications for water circulation in the Earth’s deep mantle. Phys. Earth Planet. Inter., 156, 89–107. https://doi.org/10.1016/j.pepi.2006.02.002
168 Krebs, J.J., & Maisch, W.G. (1971). Exchange effects in the optical‐absorption spectrum of Fe3+ in Al2O3. Phys. Rev. B, 4, 757–769. https://doi.org/10.1103/PhysRevB.4.757
169 Kurnosov, A., Marquardt, H., Dubrovinsky, L., & Potapkin, V. (2019). A waveguide‐based flexible CO2‐laser heating system for diamond‐anvil cell applications. Comptes Rendus Geosci., 351, 280–285. https://doi.org/10.1016/j.crte.2018.09.008
170 Kurnosov, A., Marquardt, H., Frost, D.J., Ballaran, T.B., & Ziberna, L. (2017). Evidence for a Fe3+‐rich pyrolitic lowermantle from (Al,Fe)‐bearing bridgmanite elasticity data. Nature, 543, 543–546. https://doi.org/10.1038/nature21390
171 Labrosse, S., Hernlund, J.W., & Hirose, K. (2015). Fractional melting and freezing in the deep mantle and implications for the formation of a basal magma ocean. In Badro, J., Walter, M. (Eds.), The Early Earth: Accretion and Differentiation. American Geophysical Union, Washington, D.C., pp. 123–142. https://doi.org/10.1002/9781118860359.ch7
172 Lakshtanov, D.L., Sinogeikin, S.V., Litasov, K.D., Prakapenka, V.B., & Hellwig, H., Wang, J., et al. (2007). The post‐stishovite phase transition in hydrous alumina‐bearing SiO2 in the lower mantle of the earth. Proc. Natl. Acad. Sci. U.S.A., 104, 13588–13590. https://doi.org/10.1073/pnas.0706113104
173 Lehmann, G., Harder, H. (1970). Optical spectra of di‐ and trivalent iron in corundum. Am. Mineral., 55, 98–105.
174 Li, B., Kung, J., & Liebermann, R.C. (2004). Modern techniques in measuring elasticity of Earth materials at high pressure and high temperature using ultrasonic interferometry in conjunction with synchrotron X‐radiation in multi‐anvil apparatus. Phys. Earth Planet. Inter., 143–144, 559–574. https://doi.org/10.1016/j.pepi.2003.09.020
175 Li, B., Liebermann, R.C. (2014). Study of the Earth’s interior using measurements of sound velocities in minerals by ultrasonic interferometry. Phys. Earth Planet. Inter., 233, 135–153. https://doi.org/10.1016/j.pepi.2014.05.006
176 Li, J., Struzhkin, V.V., Mao, H., Shu, J., Hemley, R.J., Fei, Y., Mysen, B., et al. (2004). Electronic spin state of iron in lower mantle perovskite. Proc. Natl. Acad. Sci. U.S.A., 101, 14027–14030.