href="https://doi.org/10.1080/21582041.2018.1563803">https://doi.org/10.1080/21582041.2018.1563803
KIVIAT, B. (2019). The Moral Limits of Predictive Practices: The Case of Credit-Based Insurance Scores. American Sociological Review, 84(6), 1134-1158. Disponible en: https://doi.org/10.1177/0003122419884917
KLEIN, A. (2020, julio 10). Reducing bias in AI-based financial services. Brookings. Disponible en: https://www.brookings.edu/research/reducing-bias-in-ai-based-financial-services/
LIPSKY, M. (2010). Street-Level Bureaucracy, 30th Anniversary Edition: Dilemmas of the Individual in Public Service. Russell Sage Foundation.
MANKIW, N. G. (2017). Principles of Economics. Cengage Learning.
MANYIKA, J.; LUND, S.; CHUI, M.; BUGHIN, J.; WOETZEL, J.; BATRA, P.; KO, R. & SANGHVI, S. (2017). Jobs lost, jobs gained: Workforce transitions in a time of automation. McKinsey Global Institute.
MILLER, S. M. & KEISER, L. R. (2020). Representative Bureaucracy and Attitudes Toward Automated Decision Making. Journal of Public Administration Research and Theory. Disponible en: https://doi.org/10.1093/jopart/muaa019
NEWMAN PONT, V. & ÁNGEL ARANGO, M. P. (2019). Rendición de cuentas de Google y otros negocios en Colombia: La protección de datos personales en la era digital. Dejusticia.
O’NEIL, C. (2016). Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy (Crown).
ORDÓÑEZ-MATAMOROS, G.; TADLAOUI, S.; PORRAS ALZATE, S.; DUARTE GARCÍA, J. A.; LÓPEZ, L. H.; MARTÍNEZ FAJARDO, L. P. & CALDERÓN-PEÑA, G. A. (2013). Manual de análisis y diseño de políticas públicas. Universidad Externado de Colombia.
OSPINA CELIS, D.; UPEGUI MEJÍA, J. C. & NEWMAN PONT, V. (2020). Festín de datos. Empresas y datos personales en América Latina. Dejusticia.
PENCHEVA, I.; ESTEVE, M. & MIKHAYLOV, S. J. (2020). Big Data and AI – A transformational shift for government: So, what next for research? Public Policy and Administration, 35(1), 24-44. Disponible en: https://doi.org/10.1177/0952076718780537
PEREZ, C. C. (2019). Invisible Women: Data Bias in a World Designed for Men (Harry N. Abrams).
POMBO, C. & GONZÁLEZ ALARCÓN, N. (2020). ¿Cómo puede la inteligencia artificial ayudar en una pandemia? (2020.a ed.). Banco interamericano de Desarrollo. Disponible en: https://doi.org/10.18235/0002300
PRESIDENCIA DE LA REPÚBLICA (2019, abril 30). Lanzamiento del Centro para la Cuarta Revolución Industrial demuestra que Colombia quiere pensar en grande, actuar en grande y transformar en grande: Presidente Duque. Presidencia de la República. Disponible en: https://id.presidencia.gov.co:443/Paginas/prensa/2019/190430-Lanzamiento-Centro-para-Cuarta-Revolucion-Industrial-demuestra-Colombia-quiere-pensar-grande-actuar-grande-President.aspx
RAY, R. (2020, febrero 20). 5 questions policymakers should ask about facial recognition, law enforcement, and algorithmic bias. Brookings. Disponible en: https://www.brookings.edu/research/5-questions-policymakers-should-ask-about-facial-recognition-law-enforcement-and-algorithmic-bias/
ROBISON, C. C. & M. (2020, noviembre 23). How AI bots and voice assistants reinforce gender bias. Brookings. Disponible en: https://www.brookings.edu/research/how-ai-bots-and-voice-assistants-reinforce-gender-bias/
ROGGE, N.; AGASISTI, T. & DE WITTE, K. (2017). Big data and the measurement of public organizations’ performance and efficiency: The state-of-the-art. Public Policy and Administration, 32(4), 263-281. Disponible en: https://doi.org/10.1177/0952076716687355
SCHWAB, K. (2016). La cuarta revolución industrial. Penguin Random House.
STONE, D. (2011). Policy Paradox: The Art of Political Decision Making. W Norton & Company Incorporated.
THIERER, A. D.; CASTILLO O’SULLIVAN, A. & RUSSELL, R. (2017). Artificial Intelligence and Public Policy (SSRN Scholarly Paper ID 3021135). Social Science Research Network. Disponible en: https://papers.ssrn.com/abstract=3021135
THOMKE, S. H. (2020). Experimentation Works: The Surprising Power of Business Experiments. Harvard Business Review Press.
VALLE-CRUZ, D.; CRIADO, J. I.; SANDOVAL-ALMAZÁN, R. & RUVALCABA-GÓMEZ, E. A. (2020). Assessing the public policy-cycle framework in the age of artificial intelligence: From agenda-setting to policy evaluation. Government Information Quarterly, 37 (4), 101509. Disponible en: https://doi.org/10.1016/j.giq.2020.101509
VOGL, T. M.; SEIDELIN, C.; GANESH, B. & BRIGHT, J. (s. f.). Smart Technology and the Emergence of Algorithmic Bureaucracy: Artificial Intelligence in UK Local Authorities. Public Administration Review, n/a(n/a). Disponible en: https://doi.org/10.1111/puar.13286
WEIMER, D. L. & VINING, A. R. (2017). Policy Analysis: Concepts and Practice (Routledge).
WEST, D. M. & ALLEN, J. R. (2020). Turning Point: Policymaking in the Era of Artificial Intelligence. Brookings Institution Press.
WHITE HOUSE (2016). Artificial intelligence, automation, and the economy. Executive office of the President. https://obamawhitehouse.archives.gov/sites/whitehouse.gov/files/documents/Artificial-Intelligence-Automation-Economy.pdf.
WIRTZ, B. W. & MÜLLER, W. M. (2019). An integrated artificial intelligence framework for public management. Public Management Review, 21(7), 1076-1100. Disponible en: https://doi.org/10.1080/14719037.2018.1549268
WIRTZ, B. W.; WEYERER, J. C. & GEYER, C. (2019). Artificial Intelligence and the Public Sector—Applications and Challenges. International Journal of Public Administration, 42 (7), 596-615. Disponible en: https://doi.org/10.1080/01900692.2018.1498103
YORK, P. & BAMBERGER, M. (2020). Measuring results and impact in the age of big data: The nexus of evaluation, analytics, and digital technology. The Rockefeller Foundation.
YOUNG, M. M.; BULLOCK, J. B. & LECY, J. D. (2019). Artificial Discretion as a Tool of Governance: A Framework for Understanding the Impact of Artificial Intelligence on Public Administration. Perspectives on Public Management and Governance, 2(4), 301-313. Disponible en: https://doi.org/10.1093/ppmgov/gvz014
CAROLINA ISAZA* ANÍBAL ZÁRATE**