квадрата диагональю, является общей мерой для двух квадратов. Сопоставление двух целых предметов достигается благодаря их составленности из соизмеримых частей, в конечном счете из многократно воспроизведенной части, являющейся общей мерой.
Однако не все оказывается так гладко. Пифагорейцам пришлось иметь дело с задачами, которые не решаются подобным способом. В таких задачах ни при каком разбиении на части одного целого не удается составить из этих частей другое. Иными словами, существуют несоизмеримые величины. Таковы, например, сторона и диагональ квадрата. Мы не будем приводить здесь доказательства их несоизмеримости, но попробуем описать существо проблемы. Ясно, что диагональ больше стороны. При этом она не превышает сторону в целое число раз: удвоив сторону квадрата, мы получим величину, превышающую диагональ. Если взять теперь половину стороны, то окажется, что две половины, как мы знаем, меньше диагонали, тогда как три вторых стороны ее превышают. Разбив сторону на три равные части, мы получим, что 4/3 стороны меньше диагонали, а 5/3 – больше. Точно также 5/4 стороны не достает для покрытия диагонали, 6/4 – уже избыток. Такой же результат получится и при более дробных делениях. На какие бы равные части мы ни разделили сторону, нам никогда не удастся составить из этих частей диагональ, мы всякий раз будем получать либо недостаток, либо превышение. Впрочем, чем более мелкие части мы будем использовать, тем меньше будет разница между диагональю и составленных из этих частей отрезков. Поскольку линия делима до бесконечности, то можно достичь сколь угодно точного приближения, но точного равенства – никогда.
Несоизмеримость явно связана с бесконечной делимостью. Она не могла бы возникнуть, если бы существовал некий предел делению, если бы мы могли выявить некий атом[44], из которого были бы составлены все геометрические величины. Такой атом был бы универсальной мерой, и несоизмеримость была бы невозможна. Но такого атома нет, и, соответственно, нет общей меры для всех геометрических величин. При решении каждой задачи мы должны выбирать особую меру, сообразно ее условиям. Но, оказывается, что найти такую меру не всегда возможно.
В геометрии, таким образом, мы опять имеем дело с пределом и беспредельным. Фигуры и линии ограничены, т. е. имеют предел, но бесконечно делимы, следовательно, включают беспредельное. Точки, ограничивающие линии, и линии, огранивающие фигуры, играют ту же роль, что отдельные голоса в музыке. Они разграничивают континуум, бесконечно делимую среду, вносят в нее структуру, определенность. Именно благодаря такому разграничению возникают соразмерные целостности, подобные тем, которые мы видели в задаче об удвоении квадрата. Но, как видим, в геометрии предел не всегда может совладать с беспредельным. «Прорываясь» в виде несоизмеримости, оно не позволяет нам достичь полной ясности при изучении геометрических фигур и величин.
Гораздо в большей степени удается достичь ясности в арифметике. Здесь мы имеем как раз то, что отсутствовало в геометрии – общую меру. Все числа соизмеримы, поскольку составлены из единиц.