and the world had them yesterday, and the future shall see them as active as ever.
These people do good to the world, and their labors should always be welcome, for out of the myriad of suggestions that they make a few have value, and these are helpful both to the mathematician and the artisan. Not infrequently they have contributed material that serves to make geometry somewhat more interesting, but it must be confessed that most of their work is merely the threshing of old straw, like the work of those who follow the will-o'-the-wisp of the circle squarers. The medieval astrologers wished to make geometry more practical, and so they carried to a considerable length the study of the star polygon, a figure that they could use in their profession. The cathedral builders, as their
art progressed, found that architectural drawings were more exact if made with a single opening of the compasses, and it is probable that their influence led to the development of this phase of geometry in the Middle Ages as a practical application of the science. Later, and about the beginning of the sixteenth century, the revival of art, and particularly the great development of painting, led to the practical application of geometry to the study of perspective and of those curves[6] that occur most frequently in the graphic arts. The sixteenth and seventeenth centuries witnessed the publication of a large number of treatises on practical geometry, usually relating to the measuring of distances and partly answering the purposes of our present trigonometry. Such were the well-known treatises of Belli (1569), Cataneo (1567), and Bartoli (1589).[7]
The period of two centuries from about 1600 to about 1800 was quite as much given to experiments in the creation of a practical geometry as is the present time, and it was no doubt as much by way of protest against this false idea of the subject as a desire to improve upon Euclid that led the great French mathematician, Legendre, to publish his geometry in 1794,—a work that soon replaced Euclid in the schools of America.
It thus appears that the effort to make geometry practical is by no means new. Euclid knew of it, the Middle Ages contributed to it, that period vaguely styled the Renaissance joined in the movement, and the first three centuries of printing contributed a large literature to the
subject. Out of all this effort some genuine good remains, but relatively not very much.[8] And so it will be with the present movement; it will serve its greatest purpose in making teachers think and read, and in adding to their interest and enthusiasm and to the interest of their pupils; but it will not greatly change geometry, because no serious person ever believed that geometry was taught chiefly for practical purposes, or was made more interesting or valuable through such a pretense. Changes in sequence, in definitions, and in proofs will come little by little; but that there will be any such radical change in these matters in the immediate future, as some writers have anticipated, is not probable.[9]
A recent writer of much acumen[10] has summed up this thought in these words:
Not one tenth of the graduates of our high schools ever enter professions in which their algebra and geometry are applied to concrete realities; not one day in three hundred sixty-five is a high school graduate called upon to "apply," as it is called, an algebraic or a geometrical proposition.... Why, then, do we teach these subjects, if this alone is the sense of the word "practical"!... To me the solution of this paradox consists in boldly confronting the dilemma, and in saying that our conception of the practical utility of those studies must be readjusted, and that we have frankly to face the truth that the "practical" ends we seek are in a sense ideal practical ends, yet such as have, after all, an eminently utilitarian value in the intellectual sphere.
He quotes from C. S. Jackson, a progressive contemporary teacher of mechanics in England, who speaks of pupils confusing millimeters and centimeters in some simple computation, and who adds:
There is the enemy! The real enemy we have to fight against, whatever we teach, is carelessness, inaccuracy, forgetfulness, and slovenliness. That battle has been fought and won with diverse weapons. It has, for instance, been fought with Latin grammar before now, and won. I say that because we must be very careful to guard against the notion that there is any one panacea for this sort of thing. It borders on quackery to say that elementary physics will cure everything.
And of course the same thing may be said for mathematics. Nevertheless it is doubtful if we have any other subject that does so much to bring to the front this danger of carelessness, of slovenly reasoning, of inaccuracy, and of forgetfulness as this science of geometry, which has been so polished and perfected as the centuries have gone on.
There have been those who did not proclaim the utilitarian value of geometry, but who fell into as serious an error, namely, the advocating of geometry as a means of training the memory. In times not so very far past, and to some extent to-day, the memorizing of proofs has been justified on this ground. This error has, however, been fully exposed by our modern psychologists. They have shown that the person who memorizes the propositions of Euclid by number is no more capable of memorizing other facts than he was before, and that the learning of proofs verbatim is of no assistance whatever in retaining matter that is helpful in other lines of work. Geometry, therefore, as a training of the memory is of no more value than any other subject in the curriculum.
If geometry is not studied chiefly because it is practical, or because it trains the memory, what reasons can be adduced for its presence in the courses of study of every civilized country? Is it not, after all, a mere fetish, and are not those virulent writers correct who see nothing good in the subject save only its utilities?[11] Of this type one of the most entertaining is William J. Locke,[12] whose words upon the subject are well worth reading:
... I earned my living at school slavery, teaching to children the most useless, the most disastrous, the most soul-cramping branch of knowledge wherewith pedagogues in their insensate folly have crippled the minds and blasted the lives of thousands of their fellow creatures—elementary mathematics. There is no more reason for any human being on God's earth to be acquainted with the binomial theorem or the solution of triangles, unless he is a professional scientist,—when he can begin to specialize in mathematics at the same age as the lawyer begins to specialize in law or the surgeon in anatomy,—than for him to be expert in Choctaw, the Cabala, or the Book of Mormon. I look back with feelings of shame and degradation to the days when, for a crust of bread, I prostituted my intelligence to wasting the precious hours of impressionable childhood, which could have been filled with so many beautiful and meaningful things, over this utterly futile and inhuman subject. It trains the mind,—it teaches boys to think, they say. It doesn't. In reality it is a cut-and-dried subject, easy to fit into a school curriculum. Its sacrosanctity saves educationalists an enormous amount of trouble, and its chief use is to enable mindless young men from the universities to make a dishonest living by teaching it to others, who in their turn may teach it to a future generation.
To be fair we must face just such attacks, and we must recognize that they set forth the feelings of many
honest people. One is tempted to inquire if Mr. Locke could have written in such an incisive style if he had not, as was the case, graduated with honors in mathematics at one of the great universities. But he might reply that if his mind had not been warped by mathematics, he would have written more temperately, so the honors in the argument would be even. Much more to the point is the fact that Mr. Locke taught mathematics in the schools of England, and that these schools do not seem to the rest of the world to furnish a good type of the teaching of elementary mathematics. No country goes to England for its model in this particular branch of education, although the work is rapidly changing there, and Mr. Locke pictures a local condition in teaching rather than a general condition in mathematics. Few visitors to the schools of England would care to teach mathematics as they see it taught there, in spite of their recognition of the thoroughness of the work and the earnestness of many of the teachers. It is also of interest to note that the greatest protests against formal mathematics have come from England, as witness the utterances of such men as Sir William Hamilton and Professors Perry, Minchin, Henrici, and Alfred Lodge. It may therefore be questioned whether these scholars are not unconsciously protesting against