geometry succeeds relatively better than the teacher of other subjects, because the science has reached a relatively higher state of perfection. The body of truth in geometry has been more clearly marked out, it has been more successfully fitted together, its lesson is more patent, and the experience of centuries has brought it into a shape that is more usable in the school. While, therefore, we have all kinds of teaching in all kinds of subjects, the very nature of the case leads to the belief that the class in geometry receives quite as much from the teacher and the subject as the class in any other branch in the school curriculum.
But is this not mere conjecture? What are the results of scientific investigation of the teaching of geometry? Unfortunately there is little hope from the results of such an inquiry, either here or in other fields. We cannot first weigh a pupil in an intellectual or moral balance, then feed him geometry, and then weigh him again, and then set back his clock of time and begin all over again with the same individual. There is no "before taking" and "after taking" of a subject that extends over a year or two of a pupil's life. We can weigh utilities roughly, we can estimate the pleasure of a subject relatively, but we cannot say that geometry is worth so many dollars, and history so many, and so on through the curriculum. The best we can do is to ask ourselves what the various subjects, with teachers of fairly equal merit, have done for us, and to inquire what has been the experience of other persons. Such an investigation results in showing that, with few exceptions, people who have studied geometry received as much of pleasure, of inspiration, of satisfaction, of what they call training from geometry as from any other subject of study,—given teachers of equal merit,—and that they would not willingly give up the something which geometry brought to them. If this were not the feeling, and if humanity believed that geometry is what Mr. Locke's words would seem to indicate, it would long ago have banished it from the schools, since upon this ground rather than upon the ground of utility the subject has always stood.
These seem to be the great reasons for the study of geometry, and to search for others would tend to weaken the argument. At first sight they may not seem to justify the expenditure of time that geometry demands, and they may seem unduly to neglect the argument that geometry is a stepping-stone to higher mathematics. Each of these points, however, has been neglected purposely. A pupil has a number of school years at his disposal; to what shall they be devoted? To literature? What claim has letters that is such as to justify the exclusion of geometry? To music, or natural science, or language? These are all valuable, and all should be studied by one seeking a liberal education; but for the same reason geometry should have its place. What subject, in fine, can supply exactly what geometry does? And if none, then how can the pupil's time be better expended than in the study of this science?[14] As to the second point, that a claim should be set forth that geometry is a sine qua non to higher mathematics, this belief is considerably exaggerated because there are relatively few who proceed from geometry to a higher branch of mathematics. This argument would justify its status as an elective rather than as a required subject.
Let us then stand upon the ground already marked out, holding that the pleasure, the culture, the mental poise, the habits of exact reasoning that geometry brings,
and the general experience of mankind upon the subject are sufficient to justify us in demanding for it a reasonable amount of time in the framing of a curriculum. Let us be fair in our appreciation of all other branches, but let us urge that every student may have an opportunity to know of real geometry, say for a single year, thereafter pursuing it or not, according as we succeed in making its value apparent, or fail in our attempt to present worthily an ancient and noble science to the mind confided to our instruction.
The shortsightedness of a narrow education, of an education that teaches only machines to a prospective mechanic, and agriculture to a prospective farmer, and cooking and dressmaking to the girl, and that would exclude all mathematics that is not utilitarian in the narrow sense, cannot endure.
The community has found out that such schemes may be well fitted to give the children a good time in school, but lead them to a bad time afterward. Life is hard work, and if they have never learned in school to give their concentrated attention to that which does not appeal to them and which does not interest them immediately, they have missed the most valuable lesson of their school years. The little practical information they could have learned at any time; the energy of attention and concentration can no longer be learned if the early years are wasted. However narrow and commercial the standpoint which is chosen may be, it can always be found that it is the general education which pays best, and the more the period of cultural work can be expanded the more efficient will be the services of the school for the practical services of the nation.[15]
Of course no one should construe these remarks as opposing in the slightest degree the laudable efforts that are constantly being put forth to make geometry more
interesting and to vitalize it by establishing as strong motives as possible for its study. Let the home, the workshop, physics, art, play,—all contribute their quota of motive to geometry as to all mathematics and all other branches. But let us never forget that geometry has a raison d'être beyond all this, and that these applications are sought primarily for the sake of geometry, and that geometry is not taught primarily for the sake of these applications.
When we consider how often geometry is attacked by those who profess to be its friends, and how teachers who have been trained in mathematics occasionally seem to make of the subject little besides a mongrel course in drawing and measuring, all the time insisting that they are progressive while the champions of real geometry are reactionary, it is well to read some of the opinions of the masters. The following quotations may be given occasionally in geometry classes as showing the esteem in which the subject has been held in various ages, and at any rate they should serve to inspire the teacher to greater love for his subject.
The enemies of geometry, those who know it only imperfectly, look upon the theoretical problems, which constitute the most difficult part of the subject, as mental games which consume time and energy that might better be employed in other ways. Such a belief is false, and it would block the progress of science if it were credible. But aside from the fact that the speculative problems, which at first sight seem barren, can often be applied to useful purposes, they always stand as among the best means to develop and to express all the forces of the human intelligence.—Abbé Bossut.
The sailor whom an exact observation of longitude saves from shipwreck owes his life to a theory developed two thousand years ago by men who had in mind merely the speculations of abstract geometry.—Condorcet.
If mathematical heights are hard to climb, the fundamental principles lie at every threshold, and this fact allows them to be comprehended by that common sense which Descartes declared was "apportioned equally among all men."—Collet.
It may seem strange that geometry is unable to define the terms which it uses most frequently, since it defines neither movement, nor number, nor space,—-the three things with which it is chiefly concerned. But we shall not be surprised if we stop to consider that this admirable science concerns only the most simple things, and the very quality that renders these things worthy of study renders them incapable of being defined. Thus the very lack of definition is rather an evidence of perfection than a defect, since it comes not from the obscurity of the terms, but from the fact that they are so very well known.—Pascal.
God eternally geometrizes.—Plato.
God is a circle of which the center is everywhere and the circumference nowhere.—Rabelais.
Without mathematics no one can fathom the depths of philosophy. Without philosophy no one can fathom the depths of mathematics. Without the two no one can fathom the depths of anything.—Bordas-Demoulin.
We may look upon geometry as a practical logic, for the truths which it studies, being the most simple and most clearly understood of all truths, are on this account the most susceptible of ready application in reasoning.—D'Alembert.
The advance and the perfecting of mathematics are closely joined to the prosperity of the nation.—Napoleon.