David Eugene Smith

The Teaching of Geometry


Скачать книгу

      Hold nothing as certain save what can be demonstrated.—Newton.

      To measure is to know.—Kepler.

      The method of making no mistake is sought by every one. The logicians profess to show the way, but the geometers alone ever reach it, and aside from their science there is no genuine demonstration.—Pascal.

      The taste for exactness, the impossibility of contenting one's self with vague notions or of leaning upon mere hypotheses, the necessity for perceiving clearly the connection between certain propositions and the object in view,—these are the most precious fruits of the study of mathematics.—Lacroix.

      

      Bibliography. Smith, The Teaching of Elementary Mathematics, p. 234, New York, 1900; Henrici, Presidential Address before the British Association, Nature, Vol. XXVIII, p. 497; Hill, Educational Value of Mathematics, Educational Review, Vol. IX, p. 349; Young, The Teaching of Mathematics, p. 9, New York, 1907. The closing quotations are from Rebière, Mathématiques et Mathématiciens, Paris, 1893.

       Table of Contents

      A BRIEF HISTORY OF GEOMETRY

      The geometry of very ancient peoples was largely the mensuration of simple areas and solids, such as is taught to children in elementary arithmetic to-day. They early learned how to find the area of a rectangle, and in the oldest mathematical records that have come down to us there is some discussion of the area of triangles and the volume of solids.

      The earliest documents that we have relating to geometry come to us from Babylon and Egypt. Those from Babylon are written on small clay tablets, some of them about the size of the hand, these tablets afterwards having been baked in the sun. They show that the Babylonians of that period knew something of land measures, and perhaps had advanced far enough to compute the area of a trapezoid. For the mensuration of the circle they later used, as did the early Hebrews, the value π = 3. A tablet in the British Museum shows that they also used such geometric forms as triangles and circular segments in astrology or as talismans.

      The Egyptians must have had a fair knowledge of practical geometry long before the date of any mathematical treatise that has come down to us, for the building of the pyramids, between 3000 and 2400 B.C., required the application of several geometric principles. Some knowledge of surveying must also have been necessary to carry out the extensive plans for irrigation that were executed under Amenemhat III, about 2200 B.C.

      The first definite knowledge that we have of Egyptian mathematics comes to us from a manuscript copied on papyrus, a kind of paper used about the Mediterranean in early times. This copy was made by one Aah-mesu (The Moon-born), commonly called Ahmes, who probably flourished about 1700 B.C. The original from which he copied, written about 2300 B.C., has been lost, but the papyrus of Ahmes, written nearly four thousand years ago, is still preserved, and is now in the British Museum. In this manuscript, which is devoted chiefly to fractions and to a crude algebra, is found some work on mensuration. Among the curious rules are the incorrect ones that the area of an isosceles triangle equals half the product of the base and one of the equal sides; and that the area of a trapezoid having bases b, b', and the nonparallel sides each equal to a, is ½a(b + b'). One noteworthy advance appears, however. Ahmes gives a rule for finding the area of a circle, substantially as follows: Multiply the square on the radius by (16/9)2, which is equivalent to taking for π the value 3.1605. This papyrus also contains some treatment of the mensuration of solids, particularly with reference to the capacity of granaries. There is also some slight mention of similar figures, and an extensive treatment of unit fractions,—fractions that were quite universal among the ancients. In the line of algebra it contains a brief treatment of the equation of the first degree with one unknown, and of progressions.[16]

      

      Herodotus tells us that Sesostris, king of Egypt,[17] divided the land among his people and marked out the boundaries after the overflow of the Nile, so that surveying must have been well known in his day. Indeed, the harpedonaptæ, or rope stretchers, acquired their name because they stretched cords, in which were knots, so as to make the right triangle 3, 4, 5, when they wished to erect a perpendicular. This is a plan occasionally used by surveyors to-day, and it shows that the practical application of the Pythagorean Theorem was known long before Pythagoras gave what seems to have been the first general proof of the proposition.

      From Egypt, and possibly from Babylon, geometry passed to the shores of Asia Minor and Greece. The scientific study of the subject begins with Thales, one of the Seven Wise Men of the Grecian civilization. Born at Miletus, not far from Smyrna and Ephesus, about 640 B.C., he died at Athens in 548 B.C. He spent his early manhood as a merchant, accumulating the wealth that enabled him to spend his later years in study. He visited Egypt, and is said to have learned such elements of geometry as were known there. He founded a school of mathematics and philosophy at Miletus, known from the country as the Ionic School. How elementary the knowledge of geometry then was may be understood from the fact that tradition attributes only about four propositions to Thales,—(1) that vertical angles are equal, (2) that equal angles lie opposite the equal sides of an isosceles triangle, (3) that a triangle is determined by two angles and the included side, (4) that a diameter bisects the circle, and possibly the propositions about the

      

      angle-sum of a triangle for special cases, and the angle inscribed in a semicircle.[18]

      The greatest pupil of Thales, and one of the most remarkable men of antiquity, was Pythagoras. Born probably on the island of Samos, just off the coast of Asia Minor, about the year 580 B.C., Pythagoras set forth as a young man to travel. He went to Miletus and studied under Thales, probably spent several years in Egypt, very likely went to Babylon, and possibly went even to India, since tradition asserts this and the nature of his work in mathematics suggests it. In later life he went to a Greek colony in southern Italy, and at Crotona, in the southeastern part of the peninsula, he founded a school and established a secret society to propagate his doctrines. In geometry he is said to have been the first to demonstrate the proposition that the square on the hypotenuse is equal to the sum of the squares upon the other two sides of a right triangle. The proposition was known in India and Egypt before his time, at any rate for special cases, but he seems to have been the first to prove it. To him or to his school seems also to have been due the construction of the regular pentagon and of the five regular polyhedrons. The construction of the regular pentagon requires the dividing of a line into extreme and mean ratio, and this problem is commonly assigned to the Pythagoreans, although it played an important part in Plato's school. Pythagoras is also said to have known that six equilateral triangles, three regular hexagons, or four squares, can be placed about a point so as just to fill the 360°, but that no other regular polygons can be so placed. To his school is also due the proof for the general case that the sum of the angles of a triangle equals two right angles, the first knowledge of the size of each angle of a regular polygon, and the construction of at least one star-polygon, the star-pentagon, which became the badge of his fraternity. The brotherhood founded by Pythagoras proved so offensive to the government that it was dispersed before the death of the master. Pythagoras fled to Megapontum, a seaport lying to the north of Crotona, and there he died about 501 B.C.[19]

      

Fanciful Portrait of Pythagoras Calandri's Arithmetic, 1491

      For two centuries after Pythagoras geometry passed through a period of discovery of propositions. The state of the science may be seen from the fact that Œnopides of Chios, who flourished about 465 B.C., and who had studied in Egypt, was celebrated because he showed how to let fall a perpendicular to a line, and how to make an angle equal to a given angle. A few years later, about 440 B.C., Hippocrates of Chios wrote the first Greek textbook on mathematics. He knew that the areas of circles are