methods and curriculum rather than against the subject itself. When Professor Minchin says that he had been through the six books of Euclid without really understanding an angle, it is Euclid's text and his own teacher that are at fault, and not geometry.
Before considering directly the question as to why geometry should be taught, let us turn for a moment to the other subjects in the secondary curriculum. Why, for example, do we study literature? "It does not lower the price of bread," as Malherbe remarked in speaking of the commentary of Bachet on the great work of Diophantus. Is it for the purpose of making authors? Not one person out of ten thousand who study literature ever writes for publication. And why do we allow pupils to waste their time in physical education? It uses valuable hours, it wastes money, and it is dangerous to life and limb. Would it not be better to set pupils at sawing wood? And why do we study music? To give pleasure by our performances? How many who attempt to play the piano or to sing give much pleasure to any but themselves, and possibly their parents? The study of grammar does not make an accurate writer, nor the study of rhetoric an orator, nor the study of meter a poet, nor the study of pedagogy a teacher. The study of geography in the school does not make travel particularly easier, nor does the study of biology tend to populate the earth. So we might pass in review the various subjects that we study and ought to study, and in no case would we find utility the moving cause, and in every case would we find it difficult to state the one great reason for the pursuit of the subject in question,—and so it is with geometry.
What positive reasons can now be adduced for the study of a subject that occupies upwards of a year in the school course, and that is, perhaps unwisely, required of all pupils? Probably the primary reason, if we do not attempt to deceive ourselves, is pleasure. We study music because music gives us pleasure, not necessarily our own music, but good music, whether ours, or, as is more probable, that of others. We study literature because we derive pleasure from books; the better the book the more subtle and lasting the pleasure. We study art because we receive pleasure from the great works of the masters, and probably we appreciate them the more because we have dabbled a little in pigments or in clay. We do not expect to be composers, or poets, or sculptors, but we wish to appreciate music and letters and the fine arts, and to derive pleasure from them and to be uplifted by them. At any rate, these are the nobler reasons for their study.
So it is with geometry. We study it because we derive pleasure from contact with a great and an ancient body of learning that has occupied the attention of master minds during the thousands of years in which it has been perfected, and we are uplifted by it. To deny that our pupils derive this pleasure from the study is to confess ourselves poor teachers, for most pupils do have positive enjoyment in the pursuit of geometry, in spite of the tradition that leads them to proclaim a general dislike for all study. This enjoyment is partly that of the game,—the playing of a game that can always be won, but that cannot be won too easily. It is partly that of the æsthetic, the pleasure of symmetry of form, the delight of fitting things together. But probably it lies chiefly in the mental uplift that geometry brings, the contact with absolute truth, and the approach that one makes to the Infinite. We are not quite sure of any one thing in biology; our knowledge of geology is relatively very slight, and the economic laws of society are uncertain to every one except some individual who attempts to set them forth; but before the world was fashioned the square on the hypotenuse was equal to the sum of the squares on the other two sides of a right triangle, and it will be so after this world is dead; and the inhabitant of Mars, if he exists, probably knows its truth as we know it. The uplift of this contact with absolute truth, with truth eternal, gives pleasure to humanity to a greater or less degree, depending upon the mental equipment of the particular individual; but it probably gives an appreciable amount of pleasure to every student of geometry who has a teacher worthy of the name. First, then, and foremost as a reason for studying geometry has always stood, and will always stand, the pleasure and the mental uplift that comes from contact with such a great body of human learning, and particularly with the exact truth that it contains. The teacher who is imbued with this feeling is on the road to success, whatever method of presentation he may use; the one who is not imbued with it is on the road to failure, however logical his presentation or however large his supply of practical applications.
Subordinate to these reasons for studying geometry are many others, exactly as with all other subjects of the curriculum. Geometry, for example, offers the best developed application of logic that we have, or are likely to have, in the school course. This does not mean that it always exemplifies perfect logic, for it does not; but to the pupil who is not ready for logic, per se, it offers an example of close reasoning such as his other subjects do not offer. We may say, and possibly with truth, that one who studies geometry will not reason more clearly on a financial proposition than one who does not; but in spite of the results of the very meager experiments of the psychologists, it is probable that the man who has had some drill in syllogisms, and who has learned to select the essentials and to neglect the nonessentials in reaching his conclusions, has acquired habits in reasoning that will help him in every line of work. As part of this equipment there is also a terseness of statement and a clearness in arrangement of points in an argument that has been the subject of comment by many writers.
Upon this same topic an English writer, in one of the sanest of recent monographs upon the subject,[13] has expressed his views in the following words:
The statement that a given individual has received a sound geometrical training implies that he has segregated from the whole of his sense impressions a certain set of these impressions, that he has then eliminated from their consideration all irrelevant impressions (in other words, acquired a subjective command of these impressions), that he has developed on the basis of these impressions an ordered and continuous system of logical deduction, and finally that he is capable of expressing the nature of these impressions and his deductions therefrom in terms simple and free from ambiguity. Now the slightest consideration will convince any one not already conversant with the idea, that the same sequence of mental processes underlies the whole career of any individual in any walk of life if only he is not concerned entirely with manual labor; consequently a full training in the performance of such sequences must be regarded as forming an essential part of any education worthy of the name. Moreover, the full appreciation of such processes has a higher value than is contained in the mental training involved, great though this be, for it induces an appreciation of intellectual unity and beauty which plays for the mind that part which the appreciation of schemes of shape and color plays for the artistic faculties; or, again, that part which the appreciation of a body of religious doctrine plays for the ethical aspirations. Now geometry is not the sole possible basis for inculcating this appreciation. Logic is an alternative for adults, provided that the individual is possessed of sufficient wide, though rough, experience on which to base his reasoning. Geometry is, however, highly desirable in that the objective bases are so simple and precise that they can be grasped at an early age, that the amount of training for the imagination is very large, that the deductive processes are not beyond the scope of ordinary boys, and finally that it affords a better basis for exercise in the art of simple and exact expression than any other possible subject of a school course.
Are these results really secured by teachers, however, or are they merely imagined by the pedagogue as a justification for his existence? Do teachers have any such appreciation of geometry as has been suggested, and even if they have it, do they impart it to their pupils? In reply it may be said, probably with perfect safety, that teachers of geometry appreciate their subject and lead their pupils to appreciate it to quite as great a degree as obtains in any other branch of education. What teacher appreciates fully the beauties of "In Memoriam," or of "Hamlet," or of "Paradise Lost," and what one inspires his pupils with all the nobility of these world classics? What teacher sees in biology all the grandeur of the evolution of the race, or imparts to his pupils the noble lessons of life that the study of this subject should suggest? What teacher of Latin brings his pupils to read the ancient letters with full appreciation of the dignity of style and the nobility of thought that they contain? And what teacher of French succeeds in bringing a pupil to carry on a conversation, to read a French magazine, to see the history imbedded in the words that are used, to realize the charm and power of the language, or to appreciate to the full a single classic? In other words, none of us fully appreciates his subject, and none of us can hope to bring his pupils to the ideal attitude toward any part of it. But it is