Отсутствует

Видатні наукові відкриття. Дитяча енциклопедія


Скачать книгу

з теорією тяжіння, можна припустити, що це відбулось між 1666 і 1669 роками, але в усякому разі раніше перших відкриттів, зроблених у цій галузі Лейбніцем. Математику Ньютон вважав основним інструментом фізичних досліджень і розробляв її для численних подальших додатків. Після тривалих міркувань він дійшов до обчислення нескінченно малих на основі концепції руху; математика для нього не була абстрактним продуктом людського розуму. Він вважав, що геометричні образи – лінії, поверхні, тіла – утворюються внаслідок руху: лінія – при русі точки, поверхня – при русі лінії, тіло – при русі поверхні. Ці рухи здійснюються в часі, і за будь-який малий час точка, наприклад, пройде будь-який малий шлях. Для визначення миттєвої швидкості, швидкості в даний момент, необхідно знайти відношення приросту шляху (за сучасною термінологією) до приросту часу, а потім – границі цього відношення, тобто взяти «останнє відношення», коли приріст часу прагне до нуля. Так Ньютон увів відшукання «останніх відношень», похідних, які він називав флюксіями.

      Використання теореми про взаємну оборотність операцій диференціювання й інтегрування, про яку було відомо ще Барроу, і знання похідних багатьох функцій дало Ньютонові можливість одержати інтеграли (за його термінологією, флюєнти). Якщо інтеграли безпосередньо не обчислювалися, Ньютон розкладав підінтегральну функцію в степеневий ряд і інтегрував його почленно. Для розкладання функцій у ряди він найчастіше користувався відкритим ним розкладанням бінома, застосовував і елементарні методи.

      Новий математичний апарат був апробований ученим у головній праці його життя – «Математичних початках натуральної філософії». У той період Ньютон вже вільно володів диференціюванням, інтегруванням, розкладанням у ряд, інтегруванням диференціальних рівнянь, інтерполяцією.

      Свої відкриття Ньютон зробив раніше за Лейбніца, але вчасно не опублікував їх, бо всі його математичні твори були видані після того, як він став знаменитим. У 1666 році він підготував рукопис «Наступні пропозиції достатні, щоб розв’язувати задачі за допомогою руху», що містить основні відкриття з математики. Рукопис залишався в чорновому варіанті й був опублікований тільки через триста років.

      У книзі «Аналіз за допомогою рівнянь із нескінченною кількістю членів», написаній у 1665 році, Ньютон виклав результати своєї праці про нескінченно малі ряди, у додатку рядів до розв’язання рівнянь. У 1670–1671 роках Ньютон підготував до видання більш повну роботу – «Метод флюксій і нескінченних рядів», де його вчення подається як система: розглядається обчислення флюксій, додаток їх до визначення дотичних, знаходження екстремумів, кривизни, обчислення квадратур, розв’язування рівнянь із флюксіями, що відповідає сучасним диференціальним рівнянням. Ця праця була опублікована тільки в 1736 році, вже після смерті автора.

      Метод Ньютона – Лейбніца починається із заміни кривої, що обмежує площу, яку потрібно визначити послідовністю ламаних, аналогічно